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Vitellogenin gene family in vertebrates: evolution and functions
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Abstract
The vitellogenin gene family is constituted of variable gene numbers encoding for polypeptides that are precursors of yolk
proteins and derivatives in oviparous and ovoviviparous vertebrates. The comprehension of which mechanisms have shaped
the evolution of vtg gene family represents an attractive field of research. The primary intent of this review is to summarize the
evolutionary hypotheses that have been proposed over recent decades, highlighting the differences between the proposed
models. Overall in vertebrates the evolutionary history of this gene family is the result of complex modifications deeply
influenced by events such asWhole GenomeDuplications (WGDs), lineage-specific gene losses and duplications. Interestingly
the last hypothesis allowed to date the vitellogenin gene cluster origin in the common ancestor of gnathostomes. In addition, in
the last decades, several works evidenced non-nutritional functions such as antibacterial, immunological and antioxidant
activities overcoming its classical view as a simple source of nourishment for the developing embryos.
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Introduction

The following review is focused on the vitellogenin (vtg)
gene family in vertebrates. The members of this family
encode for polypeptides that are a precursor of yolk
proteins, the main energy source for the developing
embryos in oviparous and ovoviviparous species
(Wahli et al. 1981). Several works have evidenced
that a variable number of vtg members is present in
different lineages. These observations have been corro-
borated also by the sensible increase of data coming
from available sequenced genomes. The comprehen-
sion of whichmechanisms have shaped the evolution of
vtg gene family represents an attractive field of
research. The primary intent of this review is to sum-
marize the evolutionary hypotheses that have been
proposed over recent decades, highlighting the differ-
ences between the proposed models. Indeed, the
increasing number of information about vtg genes in
several species allowed to perform comparative ana-
lyses that have led to overcome some hypotheses and
to suggest new ones. In particular, a strong contribu-
tion in this regard has been made possible by the

advent of next-generation sequencing technologies
that allowed to get new information about the number
of genes and their chromosome arrangement. The
most recent hypothesis on the evolution of the vtg
gene family by Biscotti et al. (2018) takes advantage
of these knowledges and together with the results
obtained also from an exhaustive phylogenetic analysis
evidenced an intriguing view of vtg gene family evolu-
tion starting from the vertebrate ancestor, tracing the
mechanisms underlying this process.
Although most of the vertebrates are oviparous and

ovoviviparous, a transition from yolk-dependent
nourishment toward lactation and placentation has
been observed during mammal evolution (Brawand
et al. 2008). This has been followed by a progressive
loss of vtg genes leading to the onset of new genes
involved in the development of embryonic annexes.
Furthermore, another interesting aspect of the vtg

gene family is the presence of multiple forms that
opens up a series of questions about the role of indivi-
dual Vtgs. Thus, simultaneously to the increase of
knowledge about vtg gene family evolution, several
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works have investigated the roles of Vtgs and its deriva-
tives yolk proteins, evidencing additional non-
nutritional functions.

Vitellogenin structure and synthesis

Vitellogenin is a large multidomain apolipoprotein typi-
cally produced in females but also present at lower
levels in males (Canapa et al. 2007, 2012; Barucca
et al. 2010; Verderame & Scudiero 2017). This protein
is mainly synthesized in the liver as a result of coordi-
nated endocrine stimulation that involves brain, ovary,
and liver. The production of vitellogenin is seasonal or
cyclic depending on gonadotropins. Several factors
such as nutritional status, seasonal changes, for exam-
ple in water temperature, induce the production of
gonadotropin-releasing hormone (GnRH) by the
brain (hypothalamus), which stimulates the pituitary
FSH (follicle-stimulating hormone) production
(Bhandari et al. 2003). This hormone in turns induces
the ovarian follicle to secrete estradiol-17β (E2) that
binds to specific estrogen receptors on hepatocytes.
This leads to gene induction and transcription of vtgs
in the liver. The produced vitellogenin is post-
translationally phosphorylated, glycosylated, and lipid
groups are added before to be released into the blood-
stream as homomeric complexes. Through blood, flux
Vtgs reach growing oocytes where specific receptors,
anchored in the plasma membrane, bind these proteins
that are incorporated by clathrin-mediated endocytosis
(Anderson et al. 1996; Patiño & Sullivan 2002;
Yamaguchi et al. 2005).
A complete Vtg is made up of a signal polypep-

tide, a heavy chain lipovitellin (LvH) including four
subdomains (N sheet, α helix, C sheet, and A sheet),
a phosvitin (Pv), a light chain lipovitellin (LvL), and
a von Willebrand factor type D domain (vWFD)
containing a β’component (β’-c) and a C-terminal
coding region (Ct) (Figure 1).
In LvH, amphipathic secondary and tertiary struc-

tures form a basket constituted by hydrophobic resi-
dues useful to contain lipids. This structure is similar
to that present in apolipoprotein B of vertebrates.
Moreover, the N sheet subdomain contains
a receptor binding site responsible for the interaction

with oocyte (Reading et al. 2017). In the α helix
subdomain, a site binding zinc ions is localized
while an alanine-rich sequence is present mainly in
the A sheet subdomain of teleosts and is involved in
embryo gluconeogenesis (Mikawa et al. 2006;
Reading et al. 2009). The Pv domain is a serine-
rich polypeptide able to bind phosphates whose nega-
tive charge attracts multivalent cations as calcium,
magnesium, zinc, and iron. This function is crucial
for freshwater fish, living in environments poor of
these metal ions. Another feature of the Pv domain
is the presence of glycosylation sites useful to bind
carbohydrates that, together with ions, promote the
aqueous solubility of Vtgs. The LvL domain also
contains glycosylation sites and as LvH is able to
carry lipids. The vWFD is involved in the Vtg folding
and dimerization through disulfide linkages depend-
ing on highly conserved cysteine residues (Finn 2007;
Reading et al. 2009).
During the vitellogenic stage, in the ovarian follicle,

the endosomes containing Vtgs are acidified by the
action of proton pumps and the cathepsin D, conse-
quently activated, cleaves vitellogenins in their consti-
tuents: lipovitellins, Pv, β’-c, and Ct (Carnevali et al.
2006; Finn & Kristoffersen 2007; Sun & Zhang 2015;
Hara et al. 2016). The cleavage sites present in the Vtg
proteins and responsible for the formation of these
constituents show different levels of conservation. In
themajor part of vertebrates, the cleavage site between
LvH and Pv is made up of sequence KLKKIL, while
between Pv and LvL is constituted by the K(Y/F)LG
consensus sequence (Finn 2007). Differently from
these two cleavage sites, that between LvL and β’-c
shows a higher variability. Moreover, besides these
principal sites, other cleavage sites are present in the
vitellogenin peptides that are implicated in the process
of secondary degradation that these proteins undergo
by different cathepsins (Reading et al. 2017).

Vitellogenin gene family and evolution in
vertebrates

Vtgs are members of the Large Lipid Transfer
Protein (LLTP) superfamily and are considered to
be paralogous to apolipoproteins (APO) and

Figure 1. Main components of a complete vitellogenin protein. From the left: a signal polypeptide (represented in blue); a Heavy chain
Lipovitellin (LvH) with its four subdomains: N sheet, α helix, C sheet and A sheet; a Phosvitin (Pv); a Light chain Lipovitellin (LvL);
a von Willebrand Factor type D domain vWFD with its β’component (β‘-c) and C-terminal coding region (Ct). Main cleavage sites are
reported.
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microsomal triglyceride transfer proteins (MTP).
This suggests that the LLTP superfamily arose
from an ancestral gene encoding for a protein
involved in the transport of hydrophobic molecules
(Babin et al. 1999; Wu et al. 2013).
In different oviparous and ovoviviparous vertebrate

lineages, the vtg gene family includes a variable number
of paralog genes. For example, a single gene was found
in the jawless lampreys Ichthyomyzon unicuspis and
Petromyzon marinus, while three sequences of vitello-
genin have been reported in the cartilaginous fish
Callorhinchus milii and in non-teleost fish, the spotted
gar Lepisosteus oculatus and the bichir Acipenser
schrenckii. More variable is the number of vtg genes in
teleosts from three up to eight in zebrafish Danio rerio
(Yilmaz et al. 2018a). Regarding sarcopterygians, in
coelacanths and in oviparous and ovoviviparous tetra-
pods three genes are present while four genes have been
identified in the lungfish Protopterus annectens (Biscotti
et al. 2018).
Interesting is the genomic arrangement of vtg

genes. Indeed, the microsyntenic analysis has evi-
denced that these genes are organized in the cluster
(Babin 2008; Biscotti et al. 2018) and are found in
two chromosomal regions, named M and S region in
a recent paper by Biscotti et al. (2018). In the ana-
lyzed organisms belonging to the main vertebrate
lineages, the M region harbors a variable number
of genes; the S region contains a unique gene,
exception made for Xenopus laevis in which this
gene is absent (Figure 2). In teleosts, the vtg gene
located in the S region is named vtgC, lacks the Pv
domain and presents a truncated C-terminal end
(Finn & Kristoffersen 2007).
Given the high number variability of vtg paralog

genes in vertebrates, several studies have been per-
formed to investigate the evolutionary history of
the vtg gene family (Figure 3). Initially, the pre-
sence of vtg multiple copies in the genome was
hypothesized to be due to whole genome duplica-
tion (WGD) events by Finn and Kristoffersen
(2007) (Figure 3a). In vertebrates four events of
WGD are known, in particular 1R and 2R pre-
dated the evolutionary split of vertebrates (Smith
et al. 2013), Teleosts 3R (Ts3R) occurred at the
origin of teleosts (Jaillon et al. 2004; Kasahara
et al. 2007; Nakatani et al. 2007) and a further
duplication, named Salmonids 4R (Ss4R), took
place in salmonids (Near et al. 2012; Macqueen
& Johnston 2014). According to this hypothesis
four vtg genes were expected in tetrapods, eight
in teleosts, and 16 in salmonids. However, three
vtg genes named vtgI, vtgII, and vtgIII have been
identified in tetrapods (van Het Schip et al. 1987;

Silva et al. 1989) while actinopterygians show sev-
eral multiple genes coding for different Vtg forms
(Buisine et al. 2002; Wang et al. 2005; Babin et al.
2007): in Acanthomorpha three vtg genes, named
vtgAa, vtgAb and vtgC are present (Matsubara
et al. 2003; Hiramatsu et al. 2006; Finn &
Kristoffersen 2007); in cyprinids and in eels
a variable number of genes named vtgAe and
vtgAo, respectively, are reported (Finn &
Kristoffersen 2007). The incongruence between
the number of vtg genes identified and the number
of those expected has been justified by gene loss
events that accompanied the WGDs and/or by
specific duplication phenomena occurred in certain
taxa (Finn & Kristoffersen 2007) (Figure 3a).
In 2008 Babin, through a comparative microsyn-

tenic analysis, has shown that the vtg genes are
located in two regions on the same chromosome:
one harboring the vtgI of tetrapods orthologous to
the vtgC of teleosts and the other harboring vtgII
and vtgIII of tetrapods orthologous to vtgAa and
vtgAb of teleosts. This observation led to hypothe-
size the presence of an ancestral vtg gene cluster
composed of three genes already in the common
ancestor of tetrapods and teleosts. Moreover, the
proximity between the two chromosomal regions
suggested that these genes originated from
a duplication of a single ancestral gene (Figure 3b).

Figure 2. Schematic representation of vtg microsynteny in the main
vertebrate lineages. For sarcopterygians and teleosts, it has been
deducted from gene arrangement of several species, while for cartila-
ginous fish from elephant shark. White-filled dots represent flanking
vtg genes; black-filled dots represent vtg genes. The schematic repre-
sentation of flanking vtg genes does not reflect the real chromosomal
arrangement. * indicates vtg genes absent in mammals, exception
made for Platypus, in which a unique vtg gene has been reported
(Brawand et al. 2008). In theM regionmultiple genes are present (n ≥
2). In S region a single gene is present corresponding to vtgI of
tetrapods and vtgC of teleosts. Xenopus laevis lacks the single gene in
the S region. In teleosts, the distribution of vtg and related flanking
genes on two chromosomes is the result of Teleost-specific whole
genome duplication event (Ts3R).
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Subsequently, Finn et al. (2009) and Kasahara
et al. (2007) reformulated their hypothesis on the
basis of the results of Babin (2008).
Further studies performed by Brawand et al.

(2008) on the acquisition of new nutritional reserves
for early offspring in mammals have strengthened the
hypothesis of the evolution of vitellogenin gene family
from an ancestral gene cluster constituted by two
genes, vitI (called vtgI in Babin 2008) and vitanc
(vtg ancestral). These genes were present at the time
of separation between amphibian and reptile lineages.
Moreover, vitanc has duplicated in tandem in the
common ancestor of reptiles, birds and mammals
leading to vtgII and vtgIII and it has undergone line-
age-specific duplications in amphibians (Figure 3c).
In mammals, a progressive loss of vtg genes followed
the acquisition of new reproductive strategies from
yolk-dependent nourishment toward lactation and
placentation (Brawand et al. 2008).
To increase knowledge on the evolutionary his-

tory of vtg gene family Canapa et al. (2012) investi-
gated the vtg genes in the basal sarcopterygian
Latimeria menadoensis. One of the three identified
sequences resulted in phylogenetically separated
and orthologous to the vtgI of tetrapods.
Recently, a report published by Biscotti et al. (2018)

based on an extended microsyntenic and phylogenetic
analyses proposed a new intriguing scenario to eluci-
date the evolutionary history of vtg gene family in verte-
brates (Figure 3d). The presence of a unique vtg gene in
agnathes suggested that the first vtg gene duplication
can be dated 500Mya, at the moment of Gnathostome
origin. Moreover, concerning the gene located in the
S region, the orthology between different evolutionary
lineages analyzed was confirmed. In the contrary, for
genes located in theM region, phylogenetic analysis did
not evidence an orthology relationship. This finding

suggests that these vtg genes resulted from independent
tandem duplication events, in agreement with the
hypothesis proposed for tetrapods by Brawand et al.
(2008).
The studies performed in the last 10 years on this

issue clearly demonstrate how the increase of knowl-
edge regarding vtg genes in different species contrib-
uted significantly to the comprehension of the vtg
gene family evolution. At the same time the works
reviewed here evidenced the paucity of data in some
taxa like lungfish and salamanders. The uncertainty
of information in these organisms is also due to the
lack of sequenced genomes, difficult to obtain given
the huge size of their genomes (Biscotti et al. 2016;
Nowoshilow et al. 2018). Thus, the findings here
summarized are a starting point for further experi-
mental opportunities that will allow to get insights
into the evolution of this interesting gene family.
Furthermore, the intriguing mode of evolution
showed for the vtg gene family represents a case of
study to review the evolution of other gene families.

Vitellogenin functions

During vertebrate evolution, the vtg gene family was
subject to events that led to a wide repertoire of gene
number in various species. The main function of
vitellogenin proteins is to represent a source of yolk
nutrients for early developmental stages. However,
the presence of multiple genes of vitellogenin opens
new questions about different functions that indivi-
dual Vtgs and their yolk protein derivates could
have. Moreover, an increasing number of works
has reported several non-nutritional roles for Vtgs.
The synthesis of vtg in the liver is triggered by

estrogens secreted from ovarian follicles. Through
the bloodstream, vitellogenins reach female gonads

Figure 3. Summary of the hypotheses proposed for the vtg gene family evolution: (a) model of Finn and Kristoffersen (2007), (b) model of
Babin (2008), (c) model of Brawand et al. (2008), and (d) model of Biscotti et al. (2018). Curved arrows indicate tandem duplications.
Dashed empty boxes indicate gene loss. For an explanation of evolutionary models here reported see text.
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and are incorporated into oocytes. During vitello-
genesis, Vtgs are cleaved into major yolk compo-
nents, lipovitellin, phosvitin, and β’-c that are
stored in the cell. Lipovitellin is a dimer consisting
of a heavy (LvH) and a light (LvL) chains. This
component is rich in amino acids and lipids essential
for embryonic development. Phosvitin is character-
ized by a high phosphorus content and serine resi-
dues, which in turns bind calcium useful for
osteogenesis. Moreover, after this initial processing,
Vtgs undergo a second proteolysis that in fishes can
vary on the basis of producing pelagic or demersal
eggs or having rapid or slow embryonic development
(Finn & Kristoffersen 2007). In acanthomorph fish
spawning pelagic eggs, the heavy chain of VtgAa
lipovitellin is highly degraded during oocyte matura-
tion, producing a pool of free amino acids that gen-
erates an osmotic gradient able to draw water. The
consequent increase of oocyte hydration has an
effect on egg buoyancy. This is also linked to water
salinity that influences the proportional ratio
between VtgAa, VtgAb, and VtgC (Reading &
Sullivan 2011). Contrarily, the LvH derived from
VtgAb is subject to a lesser proteolysis during oocyte
growth and maturation and is used in late larval
stages, as well as VtgC (Reading & Sullivan 2011).
In salmonids, this second proteolysis has not been
evidenced, probably due to the spawning of their
eggs in freshwater (Hiramatsu et al. 2002). Finally,
the third proteolysis occurs during embryogenesis
but scarce information is reported in literature.
Recently a new function has been reported about
the action of a vitellogenin subdomain as a binding
protein able to transfer tetraodotoxin (TTX) from
liver to ovary in Takifugu pardalis. This toxin is
accumulated in eggs has a dual function as
a repellent against predators and as pheromone
able to attract males (Yin et al. 2017).
Furthermore, the evidence of a not gender-related

expression of vtg (Shyu et al. 1986) overcomes its
classical view as a simple source of nourishment for
the developing embryos, addressing research to the
identification of non-nutritional functions of vtg.
Indeed, several papers have described the active role
of vtg in antibacterial activity (Zhang et al. 2005; Shi
et al. 2006; Liu et al. 2009) and in enhanced phago-
cytosis of microbes (Li et al. 2008; Liu et al. 2009).
Indeed, it has been demonstrated that Vtg is
a multivalent pattern recognition receptor (PRR)
able to selectively bind conserved components of bac-
teria and virus. After this association, Vtg may act
either as effector destabilizing/disrupting cell walls or
as a bridging molecule in enhancing phagocytosis via
opsonization (Li et al. 2008; Zhang et al. 2011).

In addition to immune functions, Vtg and yolk
proteins have been found to have also antioxidant
activity (Sun & Zhang 2015), fundamental for pro-
tection against oxidative damage (Li & Zhang
2017). In particular, Pv, due to its high serine and
phosphorous content, chelates iron avoiding DNA
damage (Ishikawa et al. 2004).
Recently Yilmaz et al. (2018b) reported the first

experimental evidence of selective knockout of mul-
tiple vtg forms in zebrafish. Their findings have
revealed not only a role of Vtg in development of
embryo and larvae but also new regulatory effects on
fecundity and fertility. Using a multiple CRISPR/
Cas9 genome editing, they showed that fecundity
was doubled in vtg1-knock out females and fertility
was 50% less in vtg3-knock out females. Moreover,
mortality increases in vtg3-knock out eggs/embryos
and in vtg1-knock out embryos. These new findings
firstly assessed that vitellogenins are essential exerting
their action at different stages during reproduction
and embryonic development.
Overall the synthesis of vtg can be induced by

exposure to estrogens but also to endocrine disrupt-
ing chemicals (EDCs) frequently found in polluted
environments. Several chemical compounds that
show estrogen-like activity are strictly associated
with anthropic activities and are mainly present in
aquatic environments (Hara et al. 2016). The injur-
ious effects of environmental estrogens (Thorpe
et al. 2009; Tetreault et al. 2011; Zoeller et al.
2012) led vitellogenin to fulfill a key role as
a biomarker in assessing the EDC effects in teleosts.
In the last two decades, a huge number of studies
has reported the vtg response to endocrine disruptor
exposition in various fish species (Petersen et al.
2000; Tilton et al. 2005; Orn et al. 2006;
Andersson et al. 2007; Canapa et al. 2007;
Mortensen & Arukwe 2007; Peters et al. 2007;
Ekman et al. 2009; Salierno & Kane 2009; Wang
et al. 2017). Moreover, the employment of Vtg and
yolk proteins in the detection of EDC contamina-
tion allowed simultaneously to develop new Vtg-
based bioassays useful to easily detect environmental
pollution (Hiramatsu et al. 2006; Wang et al. 2017).

Conclusions

Data here reviewed evidence that the mode of vtg gene
family evolution represents an extremely intriguing
case of study made complex by the action of whole
genome duplication events, together with lineage-
specific gene loss and duplications. Although papers
published in the last decade clearly demonstrated how
the increase of knowledge has been significantly
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improved the comprehension of mechanisms of vtg
gene family evolution, some questions still remain
open. Indeed, the scarcity of genomic data from lung-
fish and salamanders does not allow to confirm the
presence of vtg gene cluster in these taxa, representing
the missing pieces of the unsolved puzzle in tetrapods.
In addition, very little is known about specific

contributions of the different types of Vtg in verte-
brate development thus future efforts should be
concentrated in this research field.
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