805 research outputs found
New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides.
At the end of 2017 roughly 1.8% of the worldwide electricity came from solar photovoltaics (PV), which is foreseen to have a key role in all major future energy scenarios with an installed capacity around 5 TW by 2050. Despite silicon solar cells currently rule the PV market, the extremely more versatile thin film-based devices (mainly Cu(In,Ga)Se2 and CdTe ones) have almost matched them in performance and present room for improvement. The low availability of some elements in the present commercially available PV technologies and the recent strong fall of silicon module price below 1 $/Wp focused the attention of the scientific community on cheap earth-abundant materials. In this framework, thin film solar cells based on Cu2ZnSnS4 (CZTS) and the related sulfur selenium alloy Cu2ZnSn(S,Se)4 (CZTSSe) were strongly investigated in the last 10 years. More recently, chalcogenide PV absorbers potentially able to face TW range applications better than CZTS and CZTSSe due to the higher abundance of their constituting elements are getting considerable attention. They are based on both MY2 (where M = Fe, Cu, Sn and Y = S and/or Se) and Cu2XSnY4 (where X = Fe, Mn, Ni, Ba, Co, Cd and Y = S and/or Se) chalcogenides. In this work, an extensive review of emerging earth-abundant thin film solar cells based on both MY2 and Cu2XSnY4 species is given, along with some considerations on the abundance and annual production of their constituting elements
Recommended from our members
Determination of the Aspect-ratio Distribution of Gold Nanorods in a Colloidal Solution using UV-visible absorption spectroscopy
Knowledge of the distribution of the aspect ratios (ARs) in a chemically-synthesized colloidal solution of Gold Nano Rods (GNRs) is an important measure in determining the quality of synthesis, and consequently the performance of the GNRs generated for various applications. In this work, an algorithm has been developed based on the Bellman Principle of Optimality to readily determine the AR distribution of synthesized GNRs in colloidal solutions. This is achieved by theoretically fitting the longitudinal plasmon resonance of GNRs obtained by UV-visible spectroscopy. The AR distribution obtained from the use of the algorithm developed have shown good agreement with those theoretically generated one as well as with the previously reported results. After bench-marking, the algorithm has been applied to determine the mean and standard deviation of the AR distribution of two GNRs solutions synthesized and examined in this work. The comparison with experimentally derived results from the use of expensive Transmission Electron Microscopic images and Dynamic Light Scattering technique shows that the algorithm developed offers a fast and thus potentially cost-effective solution to determine the quality of the synthesized GNRs specifically needed for many potential applications for the advanced sensor systems
Key Success Factors and Future Perspective of Silicon-Based Solar Cells
Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV) modules are based on crystalline silicon (c-Si). PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described
The halo 3-point correlation function: a methodological analysis
Upcoming galaxy surveys will provide us with an unprecedented view of the Large -Scale Structure of the Universe and the realistic chance to extract valuable astrophysical and cosmological information from higher-order clustering statistics. This perspective poses new challenges, requiring both accurate and efficient estimators and a renewed assessment of possible systematic errors in the theoretical models and likelihood assumptions. This work investigates these issues in relation to the analysis of the 3-point correlation function (3PCF) in configuration space. We measure the 3PCF of 300 halo catalogs from the MINERVA simulations covering a total volume of 1000h-3Gpc3. Each 3PCF measurement includes all possible triangular configurations with sides between 20 and 130h-1 Mpc. In the first place, we test different estimates of the covariance matrix, a crucial aspect of the analysis. We compare the covariance computed numerically from the limited but accurate benchmark simulations set to the one obtained from 10000 approximate halo catalogs generated with the PINOCCHIO code. We demonstrate that the two numerically-estimated covariance matrices largely match, confirming the validity of approximate methods based on Lagrangian Perturbation Theory for generating mocks suitable for covariance estimation. We also compare the numerical covariance with a theoretical prediction in the Gaussian approximation. We find a good match between the two for separations above 40h-1 Mpc. We test the 3PCF tree-level model in Perturbation Theory. The model is adopted in a likelihood analysis aimed at the determination of bias parameters. We find that, for our sample of halos at redshift z = 1, the tree-level model performs well for separations r > 40h-1 Mpc. Results obtained with this scale cut are robust against different choices of covariance matrix. We compare to the analogous analysis of the halo bispectrum already presented in a previous publication, finding a remarkable agreement between the two statistics. We notice that such comparison relies, to the best of our knowledge for the first time, on a robust and consistent covariance estimate and on the inclusion of essentially all measurable configurations in Fourier as in configuration space. We then test different assumptions to build the model defining a robust combination of hypotheses that lead to unbiased parameter estimates. Our results confirm the importance of 3PCF, supplying a solid recipe for its inclusion in likelihood analyses. Moreover, it opens the path for further improvements, especially in modelling, to extract information from non-linear regimes
Physical determinants of Division 1 Collegiate basketball, Women’s National Basketball League and Women’s National Basketball Association athletes: with reference to lower body sidedness
In female basketball the assumed components of success include power, agility, and the proficiency at executing movements using each limb. However, the importance of these attributes in discriminating between playing levels in female basketball have yet to be determined. The purpose of this study was to compare lower body power, change of direction (COD) speed, agility, and lower-body sidedness between basketball athletes participating in Division 1 Collegiate basketball (United States), Women\u27s National Basketball League (WNBL) (Australia), and Women\u27s National Basketball Association (WNBA) (United States). Fifteen female athletes from each league (N = 45) completed a double and single leg counter-movement jump, static jump, drop jump, 5-0-5 COD Test, and an offensive and defensive Agility Test. One-way analysis of variance with post-hoc comparisons, were conducted to compare differences in physical characteristics (height, body mass, age) and performance outcomes (jump, COD, agility assessments) between playing levels. Separate dependent t-tests were performed to compare lower body sidedness (left vs. right lower-limbs) during the single-leg CMJ jumps (vertical jump height) and 5-0-5 COD test for each limb within each playing level. WNBA athletes displayed significantly greater lower body power (P = 0.01 - 0.03) compared to WNBL athletes, significantly faster COD speed (P = 0.02 - 0.03), and offensive and defensive agility performance (P = 0.02 - 0.03) compared to WNBL and Collegiate athletes. WNBL athletes also produced faster defensive agility performance compared to Collegiate athletes (P = 0.02). Further, WNBA and WNBL athletes exhibited reduced lower body sidedness compared to Collegiate athletes. These findings indicate the importance of lower body power, agility, and reduced lower body imbalances to execute more proficient on court movements, required to compete at higher playing levels.
Copyright (C) 2017 by the National Strength & Conditioning Association
state of the art and perspectives of inorganic photovoltaics
In the last decade, the fast increase of the global energy consumption, mainly related to the strong economic growth in the Far East, and the progressive depletion of the fossil fuels induced a run-up in the world oil price. Both these economic concerns and the growing global pollution pointed out that a transition toward renewable energies is mandatory. Among renewables, the conversion of sunlight into electricity by photovoltaic (PV) devices is a reliable choice to cope the growing energy consumption, due to the huge potentially extractable power (up to 120000 TW). The most important classes of inorganic PV devices developed in the last sixty years will be reviewed in this paper, in order to depict the state of the art of the technologies which dominate the PV market. Some novel concepts which could have an important role in the future of PV will be also described
Net community oxygen production derived from Seaglider deployments at the Porcupine Abyssal Plain site (PAP; northeast Atlantic) in 2012-13
As part of the OSMOSIS project, a fleet of gliders surveyed the Porcupine Abyssal Plain site (Northeast Atlantic) from September 2012 to September 2013. Salinity, temperature, dissolved oxygen concentration and chlorophyll fluorescence were measured in the top 1000 m of the water column. Net community production (N) over an annual cycle using an oxygen-budget approach was compared to variations of several parameters (wind speed, mixing layer depth relative to euphotic depth, temperature, density, net heat flux) showing that the main theories (Critical Depth Hypothesis, Critical Turbulence Hypothesis, Heat-flux Hypothesis) can explain the switch between net heterotrophy to net autotrophy in different times of the year, The dynamics leading to an increase in productivity were related to shifts in regimes, such as the possible differences in nutrient concentration. The oxygen concentration profiles used for this study constitute a unique dataset spanning the entire productive season resulting in a data series longer than in previous studies. Net autotrophy was found at the site with a net production of (6.4±1.9) mol m-2 in oxygen equivalents (or (4.3±1.3) mol m-2 in carbon equivalents). The period exhibiting a deep chlorophyll maximum between 10 m and 40 m of depth contributed (1.5±0.5) mol m-2 in oxygen equivalent to the total N. These results are greater than most previously published estimates
Social synchronization of brain activity increases during eye-contact
Humans make eye-contact to extract information about other people’s mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization
Recommended from our members
Social synchronization of brain activity increases during eye-contact
Copyright © The Author(s) 2022. Humans make eye-contact to extract information about other people’s mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization.BIAL Foundation (No. 138/18); Leverhulme Trust Research Fellowship
- …