81 research outputs found

    De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10−11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10−15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease

    National Unified Renal Translational Research Enterprise: Idiopathic Nephrotic Syndrome (NURTuRE-INS) study

    Get PDF
    BackgroundIdiopathic Nephrotic Syndrome (INS) is a heterogenous disease and current classification is based on observational responses to therapies or kidney histology. The National Unified Renal Translational Research Enterprise (NURTuRE)-INS cohort aims to facilitate novel ways of stratifying INS patients to improve disease understanding, therapeutics, and design of clinical trials.MethodsNURTuRE-INS is a prospective cohort study of children and adults with INS with a linked biorepository. All recruits had at least one sampling visit collecting serum, plasma, urine and blood for RNA and DNA extraction, frozen within 2 hours of collection. Clinical histology slides and biopsy tissue blocks were also collected.ResultsIn total, 739 participants were recruited from 23 centres to NURTuRE-INS, half of whom were diagnosed in childhood (n = 365, 49%). The majority were white (n = 525, 71%) and the median age at recruitment was 32 (interquartile range 12-54). Steroid-sensitive nephrotic syndrome (SSNS) was the most common clinical diagnosis (n = 518, 70%). Of patients diagnosed in childhood who underwent a kidney biopsy - for SSNS (n=103), 76 demonstrated minimal change disease (MCD); whereas for steroid-resistant nephrotic syndrome (n=80), 21 had MCD. Almost all patients diagnosed in adulthood had a kidney biopsy (n = 352, 94%); 187 MCD and 162 focal segmental glomerulosclerosis.ConclusionsNURTuRE-INS is a prospective cohort study with high-quality biosamples and longitudinal data that will assist research into the mechanistic stratification of INS. Samples and data will be available through a Strategic Access and Oversight Committee

    Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome

    Get PDF
    Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism
    • …
    corecore