208 research outputs found

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    Compacting XML Structures Using a Dynamic Labeling Scheme

    Full text link
    Abstract. Due to the growing popularity of XML as a data exchange and storage format, the need to develop efficient techniques for stor-ing and querying XML documents has emerged. A common approach to achieve this is to use labeling techniques. However, their main prob-lem is that they either do not support updating XML data dynamically or impose huge storage requirements. On the other hand, with the ver-bosity and redundancy problem of XML, which can lead to increased cost for processing XML documents, compaction of XML documents has be-come an increasingly important research issue. In this paper, we propose an approach called CXDLS combining the strengths of both, labeling and compaction techniques. Our approach exploits repetitive consecu-tive subtrees and tags for compacting the structure of XML documents by taking advantage of the ORDPATH labeling scheme. In addition it stores the compacted structure and the data values separately. Using our proposed approach, it is possible to support efficient query and update processing on compacted XML documents and to reduce storage space dramatically. Results of a comprehensive performance study are provided to show the advantages of CXDLS.

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Weaving Variability into Domain Metamodels

    Get PDF
    International audienceDomain-Specific Modeling Languages (DSMLs) describe the concepts of a particular domain and their relationships, in a meta-model. From a given DSML, it is possible to describe a wide range of different models. These models often share a common base and vary on some parts. Current approaches tend to distinguish the variability language from the DSMLs themselves, implying greater learning curve for DSMLs stakeholders and a significant overhead in product line engineering of DSLs. We propose to consider variability concepts as an independent aspect to be woven into the DSML to introduce variability capabilities. In particular we detail how variability is woven and how to perform product line derivation. We validate our approach through the weaving of variability into two very different metamodels: Ecore and SmartAdapter, our aspect-oriented modelling weaver, thus adding exibility in the weaving process itself. These results emphasize how new abilities of the language can be provided by this means

    Sensor Data Visualisation: A Composition-Based Approach to Support Domain Variability

    Get PDF
    International audienceIn the context of the Internet of Things, sensors are surrounding our environment. These small pieces of electronics are inserted in everyday life's elements (e.g., cars, doors, radiators, smartphones) and continuously collect information about their environment. One of the biggest challenges is to support the development of accurate monitoring dashboard to visualise such data. The one-size-fits-all paradigm does not apply in this context, as user's roles are variable and impact the way data should be visualised: a building manager does not need to work on the same data as classical users. This paper presents an approach based on model composition techniques to support the development of such monitoring dashboards, taking into account the domain variability. This variability is supported at both implementation and modelling levels. The results are validated on a case study named SmartCampus, involving sensors deployed in a real academic campus

    Evaluating the usability of a visual feature modeling notation

    Get PDF
    International audienceFeature modeling is a popular Software Product Line Engineering (SPLE) technique used to describe variability in a product family. A usable feature modeling tool environment should enable SPLE practitioners to produce good quality models, in particular, models that effectively communicate modeled information. FAMILIAR is a text-based environment for manipulating and composing Feature Models (FMs). In this paper we present extensions we made to FAMILIAR to enhance its usability. The extensions include a visualization of FMs, or more precisely , a feature diagram rendering mechanism that supports the use of a combination of text and graphics to describe FMs, their configurations, and the results of FM analyses. We also present the results of a preliminary evaluation of the environment's usability. The evaluation involves comparing the use of the extended environment with the previous text-based console-driven version. The preliminary experiment provides some evidence that use of the new environment results in increased cognitive effectiveness of novice users and improved quality of new FMs

    A coalgebraic perspective on logical interpretations

    Get PDF
    In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new research avenue in program refinement, (conceptual) tools are needed to reason about them. In this line, the paper’s main contribution is a study of the correspondence between logical interpretations and morphisms of a particular kind of coalgebras. This opens way to the use of coalgebraic constructions, such as simulation and bisimulation, in the study of interpretations between (abstract) logics.Fundação para a Ciência e a Tecnologia (FCT
    corecore