5,520 research outputs found

    State Discrimination with Post-Measurement Information

    Get PDF
    We introduce a new state discrimination problem in which we are given additional information about the state after the measurement, or more generally, after a quantum memory bound applies. In particular, the following special case plays an important role in quantum cryptographic protocols in the bounded storage model: Given a string x encoded in an unknown basis chosen from a set of mutually unbiased bases, you may perform any measurement, but then store at most q qubits of quantum information. Later on, you learn which basis was used. How well can you compute a function f(x) of x, given the initial measurement outcome, the q qubits and the additional basis information? We first show a lower bound on the success probability for any balanced function, and any number of mutually unbiased bases, beating the naive strategy of simply guessing the basis. We then show that for two bases, any Boolean function f(x) can be computed perfectly if you are allowed to store just a single qubit, independent of the number of possible input strings x. However, we show how to construct three bases, such that you need to store all qubits in order to compute f(x) perfectly. We then investigate how much advantage the additional basis information can give for a Boolean function. To this end, we prove optimal bounds for the success probability for the AND and the XOR function for up to three mutually unbiased bases. Our result shows that the gap in success probability can be maximal: without the basis information, you can never do better than guessing the basis, but with this information, you can compute f(x) perfectly. We also exhibit an example where the extra information does not give any advantage at all.Comment: twentynine pages, no figures, equations galore. v2 thirtyone pages, one new result w.r.t. v

    Welfare of naive and sophisticated players in school choice

    Get PDF
    Two main school choice mechanisms have attracted the attention in the literature: Boston and deferred acceptance (DA). The question arises on the ex-ante welfare implications when the game is played by participants that vary in terms of their strategic sophistication. Abdulkadiroglu, Che and Yasuda (2011) have shown that the chances of naive participants getting into a good school are higher under the Boston mechanism than under DA, and some naive participants are actually better off. In this note we show that these results can be extended to show that, under the veil of ignorance, i.e. students not yet knowing their utility values, all naive students may prefer to adopt the Boston mechanism.School Choice; Naive Players; Welfare; Veil of Ignorance

    Optimal estimation of SU(d) using exact and approximate 2-designs

    Full text link
    We consider the problem of estimating an SU(d) quantum operation when n copies of it are available at the same time. It is well known that, if one uses a separable state as the input for the unitaries, the optimal mean square error will decrease as 1/n. However it is shown here that, if a proper entangled state is used, the optimal mean square error will decrease at a 1/n^2 rate. It is also shown that spherical 2-designs (e.g. complete sets of mutually unbiased bases and symmetric informationally complete positive operator valued measures) can be used to design optimal input states. Although 2-designs are believed to exist for every dimension, this has not yet been proven. Therefore, we give an alternative input state based on approximate 2-designs which can be made arbitrarily close to optimal. It is shown that measurement strategies which are based on local operations and classical communication between the ancilla and the rest of the system can be optimal.Comment: 6 pages. v2: Complete rewrite, new results 11 page

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    Maximal subgroups and PST-groups

    Get PDF
    A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versiosn of Kaplan's results, which enables a better understanding of the relationships between these classes

    Entanglement is not very useful for estimating multiple phases

    Full text link
    The problem of the estimation of multiple phases (or of commuting unitaries) is considered. This is a sub-model of the estimation of a completely unknown unitary operation where it has been shown in recent works that there are considerable improvements by using entangled input states and entangled measurements. Here it is shown that when estimating commuting unitaries, there is practically no advantage in using entangled input states or entangled measurements.Comment: v2. New title, improved Fig.3, other minor changes, Accepted in PR

    Effect of partial ionization on wave propagation in solar magnetic flux tubes

    Full text link
    Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as a single fluid with an effective density corresponding to the sum of densities of both fluids and an effective sound velocity computed as the average of the sound velocities of ions and neutrals. The MHD wave frequencies are modified accordingly. The neutral gas pressure can be neglected when studying transverse kink waves but it has to be taken into account for a consistent description of slow magnetoacoustic waves. The MHD waves are damped due to neutral-ion collisions. The damping is most efficient when the wave frequency and the collision frequency are of the same order of magnitude. For high collision frequencies slow magnetoacoustic waves are more efficiently damped than transverse kink waves. In addition, we find the presence of cut-offs for certain combinations of parameters that cause the waves to become non-propagating.Comment: Accepted for publication in A&

    A characterization of sequential rationalizability

    Get PDF
    A choice function is sequentially rationalizable if there is an ordered collection of asymmetric binary relations that identifies the selected alternative in every choice problem. We propose a property, F-consistency, and show that it characterizes the notion of sequential rationalizability. F-consistency is a testable property that highlights the behavioral aspects implicit in sequentially rationalizable choice. Further, our characterization result provides a novel tool with which to study how other behavioral concepts are related to sequential rationalizability, and establish a priori unexpected implications. In particular, we show that the concept of rationalizability by game trees, which, in principle, had little to do with sequential rationalizability, is a refinement of the latter. Every choice function that is rationalizable by a game tree is also sequentially rationalizable. Finally, we show that some prominent voting mechanisms are also sequentially rationalizable.Individual rationality, Rationalizability, Consistency, Bounded rationality, Behavioral economics, Voting

    A theory of reference-dependent behavior

    Get PDF
    Extensive field and experimental evidence in a variety of environments show that behavior depends on a reference point. This paper provides an axiomatic characterization of this dependence. We proceed by imposing gradually more structure on both choice correspondences and preference relations, requiring increasingly higher levels of rationality, and freeing the decision-maker from certain types of inconsistencies. The appropriate degree of behavioral structure will depend on the phenomenon that is to be modeled. Lastly, we provide two applications of our work: one to model the status-quo bias, and another to model addictive behavior.Individual rationality, reference-dependence, rationalization, path independence, status-quo bias, addiction, habit formation, LeeX
    corecore