2,118 research outputs found

    Business Interruption Insurance - A Business Perspective

    Get PDF
    Business interruption insurance policies are contracts of indemnity

    Laser ion acceleration using a solid target coupled with a low density layer

    Full text link
    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.Comment: 9 pages, 11 figures. Submitted to Physical Review

    Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse

    Full text link
    The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using an one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields [S. Kar et al, New J. Phys. *9*, 402 (2007)]. Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turns causes the heating of electrons and an "echo" effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a "Coulomb explosion" regime and a saturation of ion acceleration.Comment: 9 pages, 7 figures, final revised version, to appear on Plasma Phys. Contr. Fus., special issue on "Laser and Plasma Accelerators", scheduled for February, 200

    Infrared spectra of crystalline and glassy silicates and application to interstellar dust

    Get PDF
    The infrared spectra of crystalline minerals predicted in theoretical condensation sequences do not match the astronomical observations. Since the astronomical spectra are a closer match to glassy silicates, the authors undertook a study to measure the infrared spectra of glassy silicates that have compositions similar to silicate minerals predicted in theoretical condensation sequences. The data should support observations aimed at elucidating condensation chemistry in dust forming regions. The authors measured the mass absorption coefficients, from 2.5 to 25 microns, of ground samples of olivine, diopside, and serpentine and also smoke samples that were prepared from these minerals. The smoke samples prepared in this way are predominantly glassy with nearly the same composition as the parent minerals. The crystalline samples consisted of pure olivine ((Fe(0.1)Mg(0.9))(2)SiO(4)), serpentine, diopside. Sample purity was confirmed by x ray diffraction. Each mineral was ground for 10 hours and a measured mass of the powder was mixed with KBr powder for absorption measurements using the method of Borghesi et a. (1985). The smoke samples were prepared from the same samples used for grinding by vaporizing the minerals using pulsed laser radiation in air. The smoke samples formed by condensation of the resulting vapor. The smoke settled onto infrared transparent KRS-5 substrates and onto a quartz crystal microbalance used to obtain mass measurements. A description of the preparation method is given in Stephens (1980). The glassy diopside showed only diffuse electron diffraction peaks and hence was nearly amorphous, while the serpentine smoke showed a weak diffraction pattern corresponding to MgO. The smoke from olivine showed a weak diffraction pattern corresponding to Fe2O3 and/or Fe3O4. The mass absorption coefficients, from 2.5 to 25 microns, of crystalline diopside, olivine, and serpentine and their corresponding smoke samples are shown in figures

    Constrained Hardware Dimensioning for AI Algorithms

    Get PDF
    Given the diffusion of Artificial Intelligence (AI) in numerous domains, experts and practitioners are faced with the challenge of finding the optimal hardware (HW) resources and configuration (hardware dimensioning) under different con- straints and objectives (e.g., budget, time, solution quality). To tackle this challenge, we propose an automated tool for HArdware Dimensioning of (AI) Algorithms (HADA), an approach relying on the integration of Machine Learning (ML) models together into an optimization problem, where experts domain knowledge can be injected as well. The ML models encapsulate the data-driven knowledge about the relationships between HW requirements and AI algorithm performances. We show how HADA can be employed to find the best HW configuration that respects user-defined constraints in three different domains

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    IR emission from circumstellar envelopes of C-rich stars

    Get PDF
    The reliability of a theoretical model that solves the radiative transfer equation in dust clouds surrounding a central star is checked. In particular, it is found that both classical scattering by dust and the back-heating effects are negligible in the radiative transfer when envelopes similar to IRC+10216 are taken into consideration. In addition, new fits of IRC+10216 spectra are presented which were obtained, when the source is in different luminosity phases, under the assumption that amorphous carbon grains are in the circumstellar envelope. The same model is currently used to simulate the emission from carbon-rich sources showing the silicon carbide feature at 11.3 microns

    Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing

    Get PDF
    Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {\it et.~al.}, Applied Optics {\bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {\bf 199}, pp 143-148 (2001)) have been proposed. In this paper we apply both methods to a sample laser-plasma interferogram obtained with femtoseconds probe pulse, in an experimental setup devoted to laser particle acceleration studies.Comment: Submitted to Laser and Particle Beam

    Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    Get PDF
    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell (PIC) simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.Comment: 10 pages, 10 figures accepted for publication in Physics of Plasma
    corecore