505 research outputs found

    Oxygen-induced p(2x3) reconstruction on Mo(112) studied by LEED and STM

    No full text
    The open trough-and-row Mo(112) surface serves as substrate for the epitaxial growth of MoO2. In the early stage of oxygen exposure, oxygen chemisorption induces a p(2x3) surface reconstruction of the missing row type on Mo(112). The surface structure of this reconstructed surface has been studied in detail by low-energy electron diffraction and scanning tunneling microscope. The experimental findings can be explained based on the effective medium theory for oxygen adsorption on transition-metal surfaces, providing a structure model for the oxygen-modified Mo(112) surface. The structure model allows the discussion of the oxygen-chemisorbed surface phase as a possible precursor state fo

    Proteinase-Activated Receptor 1 (PAR1) Regulates Leukemic Stem Cell Functions

    Full text link
    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance

    Transition from a molecular to a metallic adsorbate system: Core-hole creation and decay dynamics for CO coordinated to Pd

    Get PDF
    Two alternative methods to experimentally monitor the development of a CO-adsorption system that gradually changes from molecular to metallic are presented: firstly by adsorption of CO on Pd islands of increasing size deposited under UHV conditions, and secondly by growth of a Pd carbonyl-like species, formed by Pd deposition in CO atmosphere. The change in screening dynamics as a function of the number of metal atoms was investigated, using x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and core-hole-decay techniques. For CO adsorbed on UHV-deposited islands, the electronic properties of the whole CO-Pd complex is strongly dependent on island size and CO coverage: large amounts of CO result in a reduced screening ability, and small effects characteristic of molecular systems can be detected even for islands containing about 100 Pd atoms. If about half of the CO overlayer is desorbed, the CO-Pd complex exhibits a relaxation upon core ionization that is nearly as efficient as for metallic systems, even for the smallest islands (of the order of 10 Pd atoms). The growth of the carbonyl-like compound proceeds via formation of Pd-Pd bonds and has a relatively well-defined local structure. It is demonstrated that the properties of this compound approach those of an extended system for increasing coverages, and it may therefore also serve as an important link between a carbonyl and CO adsorbed on a metallic surface. A brief discussion is also given in which the results are discussed in terms of electronic properties of the thin alumina film versus bulk alumina and the applicability of the former to the construction of model catalysts

    Interaction of CO with Pd clusters supported on a thin alumina film

    Get PDF
    The adsorption of CO on Pd particles supported on a thin alumina film has been studied employing high resolution x‐ray photoelectron spectroscopy (XPS) and x‐ray absorption spectroscopy (XAS), and of special interest was the CO–Pd interaction as a function of island size and CO coverage. CO saturation at 90 K leads to an overlayer characterized by a rather weak CO–Pd hybridization as manifested by the core ionized and core excited states. The interaction strength gradually increases with island size. Desorption of parts of the overlayer results in CO more strongly interacting with the Pd islands. A comparison between the XPS and XAS energies yields a behavior indistinguishable from metallic systems for islands larger than 15 Å, i.e., the XPS binding energy appears near the x‐ray absorption onset. For the smallest islands (5 Å), a CO coverage dependent reversal of the XPS–XAS energy relation was observed, indicating a drastic change in the screening ability of the CO–Pd complex

    8-year multicenter retrospective study on partial laminate veneers

    Get PDF
    Purpose: This retrospective study aimed to evaluate the survival and success rates of ceramic partial laminate veneers. Scanning electron microscopy was used to evaluate fractures and marginal defects. Methods: In total, 31 patients received 79 partial laminate veneers on the maxillary anterior teeth. After adhesive luting, restorations were evaluated by calibrated clinicians for up to eight years using modified United States Public Health Service (USPHS) criteria. In addition, epoxy resin replicas were fabricated from silicone impressions and analyzed using scanning electron microscopy. Survival analyses were performed using the Kaplan-Meier and log-rank tests (α = 0.05). Success was analyzed in percentages by comparing the baseline and last follow-up. Results: The cumulative survival rates were 100% after 1 year; 95.9% (SE 2.8%) after 5 years; and 61.4% (SE 25.3%) after 8 years. No significant differences (P &gt; 0.05) were observed between functional and non-functional restorations. Changes in the USPHS criteria evaluation were only observed for adaptation: 12.5% (SE 4.7%), marginal discoloration: 4.2% (SE 3.0%), color match: 4.2% (SE 3.0%), and fractures: 16.7% (SE 5.3%). Scanning electron microscopy evaluations revealed undetected initial cracks and deficiencies in the restorations. Conclusions: Partial laminate veneers displayed good survival rates during the long-term follow-up. The main problems observed were related to the quality of the margins, color mismatch, and restoration integrity. However, in most cases, restoration replacement was not required.</p

    Tourette syndrome as a motor disorder revisited – Evidence from action coding

    Get PDF
    Because tics are the defining clinical feature of Tourette syndrome, it is conceptualized predominantly as a motor disorder. There is some evidence though suggesting that the neural basis of Tourette syndrome is related to perception–action processing and binding between perception and action. However, binding processes have not been examined in the motor domain in these patients. If it is particularly perception–action binding but not binding processes within the motor system, this would further corroborate that Tourette syndrome it is not predominantly, or solely, a motor disorder. Here, we studied N = 22 Tourette patients and N = 24 healthy controls using an established action coding paradigm derived from the Theory of Event Coding framework and concomitant EEG-recording addressing binding between a planned but postponed, and an interleaved immediate reaction with different levels of overlap of action elements. Behavioral performance during interleaved action coding was normal in Tourette syndrome. Response locked lateralized readiness potentials reflecting processes related to motor execution were larger in Tourette syndrome, but only in simple conditions. However, pre-motor processes including response preparation and configuration reflected by stimulus-locked lateralized readiness potentials were normal. This was supported by a Bayesian data analysis providing evidence for the null hypothesis. The finding that processes integrating different action-related elements prior to motor execution are normal in Tourette syndrome suggests that Tourette it is not solely a motor disorder. Considering other recent evidence, the data show that changes in “binding” in Tourette syndrome are specific for perception–action integration but not for action coding
    corecore