147 research outputs found

    Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    Get PDF
    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction

    MODIS information, data and control system (MIDACS) operations concepts

    Get PDF
    The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios

    Characteristic study, its identification and self-tuned approach to control hydro-power plants

    Full text link
    The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed

    MODIS-HIRIS ground data systems commonality report

    Get PDF
    The High Resolution Imaging Spectrometer (HIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) Data Systems Working Group was formed in September 1988 with representatives of the MODIS Data System Study Group and the HIRIS Project Data System Design Group to collaborate in the development of requirements on the EosDIS necessary to meet the science objectives of the two facility instruments. A major objective was to identify and promote commonality between the HIRIS and MODIS data systems, especially from the science users' point of view. A goal was to provide a base set of joint requirements and specifications which could easily be expanded to a Phase-B representation of the needs of the science users of all EOS instruments. This document describes the points of commonality and difference between the Level-II Requirements, Operations Concepts, and Systems Specifications for the ground data systems for the MODIS and HIRIS instruments at their present state of development

    MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    Get PDF
    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community

    MODIS information, data and control system (MIDACS) level 2 functional requirements

    Get PDF
    The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary

    Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain

    Get PDF
    We aimed to obtain insights on the nature of a collection of isolates presumptively identified as atypical Streptococcus pneumoniae recovered from invasive and non-invasive infections in Spain. One-hundred and thirty-two isolates were characterized by: optochin susceptibility in ambient and CO2-enriched atmosphere; bile solubility; PCR-based assays targeting pneumococcal genes lytA, ply, pspA, cpsA, Spn9802, aliB-like ORF2, and a specific 16S rRNA region; multilocus sequence analysis; and antimicrobial susceptibility. By multilocus sequence analysis, 61 isolates were S. pseudopneumoniae, 34 were pneumococci, 13 were S. mitis, and 24 remained unclassified as non-pneumococci. Among S. pseudopneumoniae isolates, 51 (83.6%) were collected from respiratory tract samples; eight isolates were obtained from sterile sources. High frequency of non-susceptibility to penicillin (60.7%) and erythromycin (42.6%) was found. Only 50.8% of the S. pseudopneumoniae isolates displayed the typical optochin phenotype originally described for this species. None harbored the cpsA gene or the pneumococcal typical lytA restriction fragment length polymorphism. The Spn9802 and the specific 16S rRNA regions were detected among the majority of the S. pseudopneumoniae isolates (n = 59 and n = 49, respectively). The ply and pspA genes were rarely found. A high genetic diversity was found and 59 profiles were identified. Among the S. pneumoniae, 23 were capsulated and 11 were non-typeable. Three non-typeable isolates, associated to international non-capsulated lineages, were recovered from invasive disease sources. In conclusion, half of the atypical pneumococcal clinical isolates were, in fact, S. pseudopneumoniae and one-fourth were other streptococci. We identified S. pseudopneumoniae and non-typeable pneumococci as cause of disease in Spain including invasive disease

    Detection of blaCTX-M-15 in an integrative and conjugative element in four extensively drug-resistant Haemophilus parainfluenzae strains causing urethritis

    Full text link
    Haemophilus parainfluenzae is a commensal organism with rising numbers of multidrug-resistant (MDR) strains. This pathogen is of increasing clinical relevance in urogenital infection. The aim of this work was to identify and characterise the molecular mechanisms of resistance associated with four cephalosporin-resistant H. parainfluenzae strains collected from patients with urethritis. Antimicrobial resistance was determined by microdilution following European Committee on Antimicrobial Susceptibility Testing cri-teria. Strains were then analysed by whole-genome sequencing to determine clonal relationship and the molecular basis of antimicrobial resistance. Finally, a phylogenetic analysis was performed on all urogen-ital MDR strains of H. parainfluenzae previously isolated in our hospital. All strains were resistant to ,B- lactams, macrolides, tetracycline, fluoroquinolones, chloramphenicol, cotrimoxazole, and aminoglycosides. The resistance profile was compatible with the presence of an extended-spectrum ,B-lactamase (ESBL). Whole-genome sequencing detected blaCTX-M-15 that conferred high minimum inhibitory concentrations to cephalosporins in two novel integrative and conjugative elements (ICEHpaHUB6 and ICEHpaHUB7) that also harboured a blaTEM-1 ,B-lactamase. This study shows a novel bla CTX-M-15 ESBL carried in an integrative conjugative element in four extensively drug-resistant H. parainfluenzae strains. This resistance determi-nant could be transmitted to other sexually transmitted pathogens and this is a cause for concern. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/
    • …
    corecore