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Abstract—This work presents defoe, a new scalable and
portable digital eScience toolbox that enables historical research.
It allows for running text mining queries across large datasets,
such as historical newspapers and books in parallel via Apache
Spark. It handles queries against collections that comprise several
XML schemas and physical representations. The proposed tool
has been successfully evaluated using five different large-scale
historical text datasets and two HPC environments, as well as on
desktops. Results shows that defoe allows researchers to query
multiple datasets in parallel from a single command-line interface
and in a consistent way, without any HPC environment-specific
requirements.

Index Terms—text mining, distributed queries, Apache Spark,
High-Performance Computing, XML schemas, digital tools, digi-
tised primary historical sources, humanities research

I. INTRODUCTION

Over the past three decades, large scale digitisation has been

transforming the collections of libraries, archives, and muse-

ums [1], [2]. The volume and quality of available digitised

text now makes searching and linking these data feasible,

where previous attempts were restricted due to limited data

availability, quality, and lack of shared infrastructures [3].

There is hunger for large scale text mining facilities from the

humanities community, with commercial providers allowing

limited access to their own digitised collections [4]. However,

there are barriers to querying the wealth of newspapers and

books that now exist in digitised, openly licensed form at scale,

which would allow humanists to be in control of their text

mining research [5].

For example, although the product of most digitisation of

Fig. 1: Digitisation example of the first The Courier and Angus
newspaper issue of 1901.

historical text is structured XML1 files derived from Optical

Character Recognition (OCR) (see Figure 1), the schemas,

structure, and size of the datasets are heterogeneous, and they

are often difficult to link and cross-query. Additionally, the

humanities community has limited capacity and/or skills to

use High-Performance Computing (HPC) environments and

analytic frameworks to create applications to mine large-scale

digital collections effectively.

This work focuses on removing some these obstacles by

enabling complex analysis of digital datasets at scale. By

bringing together computer scientists with humanities and

computational linguistics researchers, we have created a new

1XML has been commonly adopted by the cultural heritage and digital
humanities community for the delivery of large scale datasets, commonly with
some relationship to the Text Encoding Initiatives guidelines for structuring
such texts: https://tei-c.org.
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portable humanities research toolbox, called defoe2 for inter-

rogating large and heterogeneous text-based archives. defoe
uses the power of analytic frameworks, such as Apache Spark

[6], Jupyter Notebooks, and HPC environments to manipulate

and mine huge digitised archives in parallel at great speed

using a simple command line. It can be installed and used

in different computing environments (cloud systems, HPC

clusters, laptops), making humanities research portable and

reproducible.

We have demonstrated the feasibility of defoe by using

two case studies as undertaken at the University of Edinburgh

(Eruption of Krakatoa Volcano in 1883 and Female Emigra-
tion), two HPC clusters (Cray Urika and Eddie), and five

different digital collections.

This paper is structured as follows. Section II presents back-

ground. Section III discusses defoe design features. Section IV

presents two case studies for testing feasibility of the tool.

Section V describes the computing environments used for our

studies. We conclude with a summary of achievements and

outline future work.

II. RELATED WORK

The work presented in this paper builds on two pre-

vious Python text analysis packages, cluster-code3 and

i newspaper rods4, created by members of the author team

in collaboration with the Research IT Services at University

College London (UCL) 5

cluster-code [7] analyses British Library (BL) books con-

forming to a particular XML schema, while i newspaper rods
has been designed for analysing British Library newspapers

conforming to another XML schema. XML schemas describe

either the structure of a digital object or the actual textual

content of the object including the word content, styles, and

layout elements. However, the two XML schemas used by both

packages are slightly different in terms of metadata attributes,

tags, and document structure.

Even though cluster-code and i newspaper rods share a

common behaviour, they are implemented and run in different

ways. cluster-code uses mpi4py [8] (a wrapper to MPI) to

query data, while i newspaper rods uses the Apache Spark
framework. Each defines a single object model based on the

physical representation and XML schemas of the data that each

has been designed to ingest. Furthermore, each was originally

designed to extract data held within a UCL deployment of the

data management software, and run queries on UCLs HPC

services. This means, that we can not use cluster-code for

analysing BL newspapers or i newspapers for British Library

books, and we have to make several modifications to both

codebases to run them in different HPC environments.

Among the range of text mining queries supported by

cluster-code we can count the total number of pages across all

2 Daniel Defoe was both a journalist and a novelist, which are the two
datasets that this toolkit work with. Therefore, we decided to name it after him.
defoe source code available at https://github.com/alan-turing-institute/defoe

3https://github.com/UCL-dataspring/cluster-code
4https://github.com/UCL/i newspaper rods
5https://www.ucl.ac.uk/isd/services/research-it-services.

books, count the frequencies of a given list of words, find the

locations of figures, etc. Some examples of i newspapers rods
queries are counting the number of articles per year, the

frequencies of words in a given list of words, and finding

expressions that match a given pattern.

In terms of preprocessing the raw text data, both libraries

only include a basic normalisation strategy by removing non-

’a-z—A-Z’ characters and converting all text to lower case.

With defoe we aimed to create a portable tool for analysing

historical collections that conform to either of several XML

schemas and different physical representations, expanding the

range of supported queries, and including natural language

processing capabilities. All of these functionalities should be

provided using Apache Spark as the distributed and parallel

engine. More details about defoe are given in the next section.

III. THE DEFOE DIGITAL HUMANITIES TOOL

defoe is the result of merging, extending and refactoring code-

bases introduced in Sec. II in the same place, allowing queries

from a single command-line interface in a consistent way. The

main component of defoe is the text analysis pipeline (see

Figure 2), which resides at its core and has been implemented

using Apache Spark.

Fig. 2: defoe overview.

Apache Spark is an open source HPC distributed computing

framework for large-scale data processing. It uses a directed

acyclic graphs (DAG) that allow for processing multi-stage

pipelines chained in one job. Apache Spark provides an ability

to cache large datasets in memory between stages of the cal-

culation and to reuse intermediate results of the computation

in iterative algorithms. Resilient Distributed Datasets (RDD)
are the fundamental data structures of Apache Spark, which

is an immutable distributed collection of objects. RDDs are

partitioned into logical partitions across cluster nodes and

operate in parallel through transformations and actions. A

transformation is a function that produces new RDD from

existing ones. Transformations are not executed immediately,

only after an action is called. On the other hand, action are

operations that trigger execution of transformation and return

values.

Therefore, we chose Apache Spark because it provides au-

tomatic parallelisation and scalability for the four steps of our

text analysis pipeline. It loads digital collections into RDDs in
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memory, cleans data and runs text mining queries in parallel,

returning results as YAML files. To complement defoe, a

repository of Jupyter notebooks, called defoe visualisation, has

been developed to allow researchers to visualise and explore

further results obtained with defoe.

Furthermore, a lot of work has gone into defoe to remove

all HPC environment-specific requirements, allowing us to

run defoe in any computing environment that has Apache

Spark installed. The following subsections give a detailed

explanation of each step of the defoe text analysis pipeline.

A. Data Ingestion

We are able to able to consume historical textual collections

scanned via OCR into XML documents using defoe. It has

specific support for newspapers and books conforming any of

these three physical representations: 1) one XML document

per issue; 2) one XML document with search results including

several articles; and 3) one XML metadata document and XML

page. It also supports the following digital library standards:

• METS XML schema6 for descriptive, structural, technical

and administrative metadata;

• MODS XML7 for descriptive and bibliographic metadata;

• ALTO XML schema8 for encoding OCR text

• British Library-specific XML schema9 for OCR text; and

• PaperPast-specific XML schema 10 for encoding OCR

text.

As we mentioned before, XML schemas describe either the

structure of a digital document or the actual textual content. All

of these are slightly different, and none of them is universally

used. Therefore, we have created three object models (PA-
PERS, NZPP and ALTO) to map the physical representations

and XMLs schemas (see Figure 3) mentioned before. These

allow defoe to ingest digital collections into Spark RDDs,

which is the only requirement to select the appropriate object

model the digital collection to analyse is mapped onto.

For example, if we want to import a historical newspaper

collection to be analysed, first we have to check whether

the collection has been digitised using a document per is-

sue and the British Library-specific XML schema, in which

case the PAPERS object model needs to be selected. If, on

the other hand, each XML document follows the PaperPast-

specific XML schema and holds a collection of articles that

corresponds to one more issue, the NZPP object should be

selected instead. In the case of analysing ALTO archives, the

ALTO model should be selected.

We have also explored the option of ingesting XML doc-

uments using Spark SQL and DataFrames. Unlike an RDD,

DataFrames organise data into named columns, and impose

a structure on a distributed collection of data. To use this

option, we also need to infer the different XML schemas.

6http://www.loc.gov/standards/mets/
7http://www.loc.gov/standards/mods/
8https://www.loc.gov/standards/alto/
9http://www.jisc.ac.uk/media/documents/programmes/digitisation/blfinal.

pdf
10https://paperspast.natlib.govt.nz/about

(a) PAPERS object model

(b) NZPP object model

(c) ALTO object model

Fig. 3: Object models available in defoe

Therefore, we developed two new python parsers11 based on

the databricks spark-xml package12, which has been designed

to read XML documents as DataFrames.

However, due to the nested nature of the historical XML

schemas (such as ALTO, METS and British-Library specific

XML), the spark-xml package is not able to infer them

automatically, requiring a lot of manual work to flatten their

attributes. Since this option did not add further benefits to

what we already had, we decided to continue with our original

implementation using RDDs.

Once the data is loaded into RDDs with a particular object

model, defoe continues the analysis with the Natural Language

Processing (NLP) step for cleaning the text. Note that Apache

Spark ingests the data in parallel which is automatically

partitioned (in memory) across the Spark cluster.

To evaluate defoe, we have used a range of digital collec-

tions, which main features are summarised in Table I.

11https://github.com/rosafilgueira/SparkSQL DataFrames Defoe
12https://github.com/databricks/spark-xml
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Dataset Period Structure Scale Size Object
Model

British
Library
Books
(BLB)13

1510-
1899

ZIP per book
with a XML
metadata
(METS
schema) and
a XML per
page (ALTO
schema)

63700
ZIP files

220 GB ALTO
model

British
Library
News-
papers
(BLN)14

1714-
1950

XML
document
per issue
(British
Library-
specific
XML
schema).

179669
XML
docu-
ments

424 GB PAPERS
model

Times
Digital
Archive
(TDA)15

1785-
1848

XML
(British
Library-
specific
XML
schema)
per issue

69699
XML
docu-
ments

362 GB PAPERS
model

Papers
Past New
Zealand
and
Pacific
news-
papers
(NZPP)16

1839-
1863

XML
document
(with 22
articles)
corresponds
to results
from a
search via an
API)

13411
XML
docu-
ments
(PaperPast-
specific
XML
schema).

4 GB NZPP
model

Find
My Past
(FPM)

1752 -
1957

Folder per
issue, with
a XML
metadata
document
(METS) and
XML file per
issue page
(ALTO)

2067235
XML
docu-
ments

1.8TB ALTO
model

TABLE I: Main features, abbreviations and defoe object mod-

els for the digital collections explored.

B. NLP Text Preprocessing

The poor quality that often emerges from large-scale text digi-

tisation is well-documented [9], [10]. This can create issues

for searching and research based on imperfect digital copies

of text. Basic string-matching searching is unlikely to return

all the results intended by the user. We have implemented

a NLP preprocessing pipeline (see Figure 4) that deals with

character-level errors in the OCR, and which is a first step

towards allowing a more semantically meaningful exploration

of the data. Our NLP pipeline consists in the following steps.

After the raw text (from pages or articles) is ingested, the

first step is to split it into sentences. Then, each sentence

is tokenised separately, which results in a new sequence of

tokens that roughly correspond to ‘words’. Later each token

is normalised by removing non-‘a-z—A-Z’ characters and

13https://data.bl.uk/digbks/
14https://www.gale.com/uk/s?query=british+library+newspapers
15https://www.gale.com/intl/c/the-times-digital-archive
16http://paperspast.natlib.govt.nz/newspapers

Fig. 4: defoe NLP preprocessing pipeline implemented.

making them lower-case. Once tokens are normalised, users

can choose whether to apply stemming or lemmatisation.

Stemming reduces words to their word stem (base or root

form), whereas lemmatisation reduces inflectional forms to a

common base form.

After that, the pipeline performs Part-Of-Speech (POS)

tagging, which assigns parts of speech to each token (tagging

them as nouns, verbs, adjectives, and others) based on its

definition and context. Finally, the pipeline proceeds with the

named-entity recognition (NER) step to find named entities in

the tagged tokens and classify them into pre-defined categories

(names of persons, locations, organisations, times, etc).

Since the NLP pipeline is implemented in Apache Spark,

each step is a transformation, in which a function (e.g. sen-

tence splitter, tokenisation, normalisation, etc) produces new

RDDs from the existing ones.

Furthermore, we have implemented two versions of this

pipeline using widely used NLP frameworks: NLTK [11] and

spaCy [12] (see Listing 5). spaCy is an open-source software

library for advanced NLP written in Python and Cython. NLTK
is a suite of libraries and programs for symbolic and statistical

NLP for English written in Python. Their main features are

shown in Table II.

Feature spaCy NLTK
Easy installation Y Y
Python API Y Y
Multi Language support N Y
Tokenization Y Y
Part-Of-Speech tagging Y Y
Sentence segmentation Y Y
Dependency parsing Y N
Name Entity Recognition Y Y
Integrated word vectors Y N
Sentiment analysis Y Y
Conference resolution N N

TABLE II: Comparison of spaCy and NLTK features.

We are currently evaluating end-to-end performance by

comparing the outputs of the two versions of the pipeline
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against a gold standard dataset of historical texts that is being

manually annotated. This will inform which library is most

suitable for preprocessing historical newspapers and books.

At the time of writing, both implementations are available in

defoe.

Sentence: "And devoted some time to social work in London."

|spaCy preprocessing|
Word Normaliz. Lemma PoS Tag NER
And and and CCONJ CC
devoted devoted devote VERB VBN
some some some DET DT
time time time NOUN NN
to to to ADP IN
social social social ADJ JJ
work work work NOUN NN
in in in ADP IN
London london London PROPN NNP GPE
. . PUNCT .
-----------------------------------------------------------
|NLTK preprocessing|
Word Normaliz. Lemma Stem PoSTag NER
And and and and CC (S And/CC)
devoted devoted devoted devot VBN (S devoted/VBN)
some some some some DT (S some/DT)
time time time time NN (S (NP time/NN))
to to to to TO (S to/TO)
social social social social JJ (S social/JJ)
work work work work NN (S (NP work/NN))
in in in in IN (S in/IN)
London london london london NNP (S(GPE London/NNP))
. . . . (S ./.)

Fig. 5: defoe preprocessing output example. The sentence

belongs to the FMP digital corpus.

C. Text mining queries

After preprocessing the raw text data, defoe executes the

selected text mining query over clean RDDs. It offers users

a wide range of queries, some of which were directly im-

ported from i newspapers rods (such as total_issues,

total_articles or normalize). Others were im-

ported from cluster-code (such as total_pages or

total_books), but these need to be re-implemented first

in Apache Spark, since they were written in mpi4py. We also

augmented these query types with a number of new ones, such

as:

• keyword_and_concordance_by_date: Searches

for occurrences of any word in a list of keywords and

returns information on each matching article including

title, matching keyword, article text and filename. Results

are grouped by dates.

• collocates_by_year: Searches for two co-located

words separated by a maximum number of intervening

words. For each match, information about the matching

book/issue, including the book/article title, the matching

words, the intervening words, and the book/newspaper

file name are returned. Results are grouped by dates.

• keysentence_by_year: Searches for occurrences of

a sentence (or phrase) and returns counts of the number

of articles that include the sentence. Results are grouped

by year.

• target_and_keywords_by_year: Searches for oc-

currences of a target word occurring with any word in

a list of keywords and returns counts of the number of

articles which include the target word and a subset of the

keywords. Results are grouped by year.

• target_and_keywords_count_by_year:

Searches for occurrences of a target word (occurring

with any word in a list of keywords) and returns counts

of occurrences of each target word and these keywords.

Results are grouped by year.

• target_concordance_collocation_by_date:

Searches for occurrences of a target word occurring with

any word in a list of keywords and returns the keyword

plus its concordance (the text surrounding the keyword).

The filename in which the match occurs and the OCR

quality is also returned. Results are grouped by dates.

All defoe queries are based on a number of transformations

(e.g. filter, flatMap, reduceByKey, etc.) and actions

(e.g. reduce, collect, etc.) that are combined to perform

text mining analyses. Listing 6 shows as an implementation

example, the ocr_quality_by_year query, in which a

flatMap transformation is applied to issues RDDs.

For each article stored inside a given issue RDD, the trans-

formation extracts the information from the quality and

years attributes (check these on the PAPERS object model

shown in Figure 3.a) and returns it as a new qualities RDD.

Later the reduceByKey transformation is applied to group

the qualities by years. Finally the collect action is performed

to trigger the execution of previous transformations and to

gather the result in a YAML file.

def do_query(issues, config_file=None, logger=None):
# [(year, [quality]), ...]
qualities = issues.flatMap(

lambda issue: [(issue.date.year, [article.quality])\
for article in issue.articles])

result = qualities \
.reduceByKey(concat) \
.collect()

return result

Fig. 6: defoe ocr_quality_by_year query: Gets the

information on the OCR accuracy of each article and groups

the results by year.

Apache Spark excels at distributing these transformations

and actions across a cluster while abstracting away many of the

underlying implementation details, and runs them in parallel.

D. Results

As we mentioned before, defoe gathers results into

YAML files. Listing 7 shows the result obtained by the

ocr_quality_by_year query using a small subset of

BLN digital corpus. For simplification, only OCR qualities

from 1850 and 1851 articles are displayed.

Furthermore, a new repository of Jupyter Notebooks, called

defoe visualisation17, has been developed to visualise and eval-

uate further results/answers obtained from defoe. For example,

17available at https://github.com/alan-turing-institute/defoe visualization
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1850: [72.5, 85.97, 88.51, 85.41, 52.11, 82.01 85.97,
75.51, 86.28, 72.13, 75.55, 74.77, 80.05, 73.14,
88.96, 89.3, 92.01, 93.42, 91.3, 89.21, 86.29,
84.86, 80.41, 76.07, 80.41, 88.11, 90.6, 75.07,
81.62, 65.82, 85.61, 89.84, 76.15, 82.65, 84.63]

1851: [86.51, 82.82, 82.86, 82.98, 76.74, 82.59, 86.79,
88.26, 87.61, 57.51, 79.4, 68.52, 85.11, 90.07,
93.29, 85.73, 76.71, 78.2, 89.42, 92.78, 92.67,
88.92, 92.76, 89.41, 90.57, 92.77, 88.7, 85.43]

Fig. 7: defoe ocr_quality_by_year query results us-

ing a subset of BLN digital corpus

we have developed a Jupyter Notebook to analyse the results of

the colocates_by_year query (described at Sec. III-C,

that examines the presence and rate of occurrence of the

‘Stranger Danger’ phrase over the time using the BLB digital

corpus. With the developed notebook we were able to compare

results, plot them by year, normalise the results to account for

increased used of the phrase over time (see Figure 8) and

perform sentiment analyses, or visualise which words appear

more often near the ‘Stranger Danger’ phrase (see Figure 9).

Fig. 8: Examination of the total number of BL books published

to understand how much ‘Stranger Danger’ phrase is affected

by the way that the number of BL books published increases

over the measurement period

Fig. 9: Exploration of word frequency near ‘Stranger Danger’

using the BLB corpus

IV. CASE STUDIES

There are two common ways that scholars in the humanities

use text mining. One is to visualise overall patterns and trends

in text. The other is to use the search facility to return a sub-

corpus (such as whole newspaper articles that include given

terms), which can then be subject to further computational

analysis as well as manual closer analysis. defoe supports both

types of use, which we describe further with two different case

studies below.

A. Female Emigration

The first case study is part of the Oceanic Exchanges18

project and aims to mine the TDA and BLN archives for

attitudes towards female emigration from Great Britain to the

‘Colonies’ and North America from 1850 to 1914. It seeks to

understand the role that newspapers may have played as an

agent of empire, asking the following question: Can we detect
an emphasis on a ‘service of the British empire’ narrative
as a motivating factor and driver in the pursuit of female
emigration?.

Therefore, three text mining questions were designed to

move from a purely quantitative, birds-eye view into a more

semantic analysis of the topic of female emigration:

• Normalised frequencies of the names of female

emigration societies19, for which we used

keysentence_by_year and normalise defoe
queries (described in Sec. III-C).

• Normalised frequencies of specially chosen taxonomy

terms20 relating to female emigration, for which

we used target_and_keywords_by_year,

target_and_keywords_count_by_year, and

normalize defoe queries (described in Sec. III-C).

• Analysing the concordance and collocation

of the taxonomy terms , for which we used

target_concordance_collocation_by_date
defoe query (described in Sec. III-C).

defoe was not only used for running these queries in parallel

using TDA and BLN newspapers, but also for aggregating,

transforming results into CSV files (see Figure 10), post-

processing analyses, and visualising results. Analysis of the

results continues, but we can demonstrate the ability of defoe
to create n-grams to visualise the occurrences of the words

“daughter”, “engagement”, and “empire” across the corpus,

as shown in Figure 11.

B. Eruption of Krakatoa Volcano in 1883

Krakatoa (Krakatau in Indonesian) erupted over 26-27th Au-

gust 1883 and was one of the most spectacular volcanic

eruptions in contemporary times. defoe was used to identify

every mention of this eruption using the BLN, TDA, and NZPP

18https://oceanicexchanges.org
19List of the emigration societies available at https://github.com/

alan-turing-institute/defoe/blob/master/queries/emigration societies.txt
20The taxonomy terms derived from close reading of relevant newspaper,

journal and periodical archives, as well as pamphlets on the topic of emigration
from the time. These are available at https://github.com/alan-turing-institute/
defoe/blob/master/queries/emigration taxonomy.txt
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Fig. 10: Snapshot of the taxonomy terms concordance and

collocation results, using a window of 10 words preceding and

following each match across the TDA corpus. OCR quality for

each article is also captured.

Fig. 11: N-gram for the normalised frequencies of the words

“daughter”, “engagement”, and “empire” across the TDA

corpus.

newspaper corpus from late 1883 in order to contribute to an

international analysis on how the story was reported around

the world, looking at news dissemination in the late Victorian

period.
For this analysis, we used the

keyword_and_concordance_by_date query described

at Sec. III-C, which searches for occurrences of “krakatoa”

and “krakatua” and returns information on each matching

article.
The resulting small corpus of approximately 50 newspaper

articles from all over England provides a rich data set where

we can track copying and transmission of text, and this is being

analysed at the time of writing by historians, and visualised

in more advanced ways by data scientists. Further results are

available in the Jupyter Notebook repository 21

As we mentioned before, defoe allows for querying datasets

from a single command-line interface and in a consistent way.

It hides all the complexity to users, allowing to query data just

specifying the corpus, object model, and query to use via the

command line (see Listing 12).

V. COMPUTING ENVIRONMENTS

We have run the previous case studies using defoe on two HPC

clusters, Urika-GX and Eddie, both hosted at the University

of Edinburgh. We briefly descibe these two systems.

A. The Cray Urika-GX system
The Cray Urika-GX system is a high-performance analytics

cluster with a pre-integrated stack of popular analytics pack-

ages, including Apache Spark, Apache Hadoop and Jupyter

21https://github.com/alan-turing-institute/defoe visualization.

spark-submit --py-files defoe.zip \
defoe/run_query.py \
bln_files.txt papers \
defoe.papers.queries.keyword_and_concordance_by_date \
queries/preprocess.yml \
-r results_krakatoa \
-n 324

Fig. 12: Example of the command line for submitting the

keyword_and_concordance_by_date query. Users

needs to select the digital corpus to use (bln_files),

the corresponding object model (papers), the query

(keyword_and_concordance_by_date), the

preprocessing pipeline implementation (preprocess.yml),

the file to save the results in (results_krakatoa) and

the number of processes to use (324).

Notebooks, all managed using the Apache Mesos22 resource

manager. These are complemented with a tools and frame-

works to allow data analytics applications to be developed in

Python, Scala, ,R and Java.

The Alan Turing Institutes deployment of the Urika-GX
system (hereon called Urika) includes 12 compute nodes (each

with 2x18 core Broadwell CPUs), 256GB of memory and

60TB of storage (within a Lustre high-performance parallel

file system) and 2 login nodes. Both compute and login nodes

run the CentOS 7.4 operating system.

Little work was needed to run the defoe queries in Urika-GX
using several nodes. The Urika-GX software stack includes

a fault-tolerant Spark cluster configured and deployed to

run under Mesos, which acts as the cluster manager (see

Figure 13).

Fig. 13: Apache Spark Architecture in Urika-GX.

Therefore, we just needed to adjust four Spark parameters:

Spark master with the URL of the Mesos master node; number

of executors (worker nodes’ processes in charge of running

individual Spark tasks); number of cores per executor (up to

36 cores); and the amount of memory to be allocated to each

executor (up to 250GB). Even though Urika-GX has 12 nodes,

at the time of our experiments, only 9 nodes and 324 cores

were available.

22http://mesos.apache.org/
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B. Eddie

Not all researchers have access to Urika-GX. It is useful to

enable researchers to use defoe on other HPC environments

upon which, unlike Urika-GX, Spark has not been pre-installed

and configured. Eddie is a University of Edinburgh HPC

cluster. It consists of some 7000 Intel Xeon cores with up to

3TB of memory available per compute node. The cluster uses

the Open Grid Scheduler batch system on Scientific Linux 7.

Fig. 14: Apache Spark Architecture in Eddie

Since Apache Spark is not available in Eddie as a module,

we have created a new set of scripts to provision it on demand

and for a specific period of time within a batch job. The batch

job starts the Spark master (see Figure 14), Spark workers,

and registers all workers against the master.23

This new Spark on-demand cluster facility could be used

for running all types of Spark applications, going beyond to

the original scope of this work.

In terms of data analytic capacities of both HPC environ-

ments used in our case studies, running Spark queries on

Eddie requires a more complex process than on Urika-GX. We

are also more exposed to failures, since if the Spark master

crashes, no new queries can be submitted until we restart the

cluster. However, Eddie gives us more flexibility to configure a

Spark cluster, having the possibility of using a higher number

of executors (and cores) to run our text mining queries.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new digital eScience toolbox

called defoe. It allows for extracting knowledge from historical

data by running text analyses across large digital collections

in parallel. It offers a rich set of text mining queries, which

have been defined by humanities researchers. We have in-

cluded NLP prepossessing techniques to mitigate against OCR

errors and standardise the textual data. We have tested defoe
portability by running it on different computing environments

and using five different digital collections. Furthermore, we

have also provided new facilities to provision a multi-node

Apache Spark on demand cluster for HPC enviroments that

do not support Spark directly.

All this work provides the means to search across large-

scale datasets and to return results for further analysis and

interpretation by historians.

23Details about how to deploy, configure, and run defoe queries on on-
demand Spark clusters can be found at https://github.com/rosafilgueira/Spark
EDDIE TextMining.

In the future we would like to extend defoe to identify

and extract commonality across the object models and run

queries across them transparently to users. We are currently

exploring different ways to store the preprocessed RDDs (e.g.

in object storage) so we will be able to run more than a

query reusing these RDDs without the necessity to ingest a

digital collection repeatedly. Finally, we plan to create a web

interface (e.g. virtual environment) for enabling researchers to

select query(ies) to run against selected data collection(s) in a

distributed computing environment (in a transparent way for

researchers) and obtain the results in this interface. In this way,

we hope to make this facility more accessible to humanities

researchers hoping to access text mining facilities.
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