134 research outputs found

    Pengaruh Penggunaan Formalin terhadap Kerusakan Protein Daging Ikan Tuna (Thunus SP)

    Full text link
    Penggunaan bahan kimia berbahaya dalam proses penanganan, produksi maupun pengolahan produk - produk hasil perikanan beberapa tahun terakhir ini dapat merupakan salah satu pemicu terjadinya oksidasi maupun modifikasi struktur protein daging ikan yang memberikan dampak langsung terhadap kualitas gizi hasil perikanan terutama protein ikan. Sebagai contoh adalah penggunaan formalin sebagai bahan pengawet ikan.oleh para nelayan dibeberapa daerah pesisir di Indonesia. Pendekatan yang dilakukan dalam penelitian ini adalah dengan melakukan percobaan secara invitro dengan menggunakan model berupa preparat protein daging merah dan putih dari ikan Tuna (Thunus Sp). Penelitian ini bertujuan untuk mengkaji pengaruh konsentrasi formaldehid yang digunakan serta dampak interaksinya dengan protein terhadap pembentukan protein karbonil, penurunan protein terlarut dan terjadinya denaturasi protein (modifikasi srtuktur) protein serta kandungan asam amino dari protein daging merah dan putih ikan Tuna. Hasil penelitian menunjukkan konsentrasi formaldehid berpengaruh sangat nyata terhadap pembentukan protein karbonil, penurunan protein terlarut serta terjadinya denaturasi protein (modifikasi struktur) pada daging merah maupun daging putih dari ikan Tuna. Dampak interaksi antara protein dengan formaldehid menyebabkan terjadinya penurunan yang signifikan pada beberapa asam amino esensial seperti histidin, metionin dan lisin yaitu sebesar 45,71 %; 20,46 %; 34,90 % pada daging merah dan 35,56 %; 27,83 %; 12,87 % pada daging putih. Adanya perbedaan komposisi kimia antara daging merah dan daging putih dari ikan Tuna menyebabkan protein daging merah cenderung lebih cepat mengalami kerusakan oksidatif bila dibandingkan dengan daging putih

    Pengaruh Penggunaan Formalin terhadap Kerusakan Protein Daging Ikan Tuna (Thunus sp)

    Get PDF
    Formaldehyde is used on handling and processing of fishery product by some fisher at some coastal region of Indonesia was one that promotes protein oxidation and modification of protein structure of fish meat which give direct impact on nutritional quality of fish primarily the amino acids. This experiment was done in vitro experiment by using model of protein preparat of red and white meat of tuna. The purpose of this research was to study the effect of formaldehyde concentration and impact of formaldehyde interaction with protein on the carbonyl protein formation, and protein denaturation (modification of protein structure) and amino acids content of red and white meat of tuna. The results showed that the formaldehyde concentration affected significant on carbonyl protein formation, and protein denaturation on red and white meat of tuna. The impact of interaction between protein and formaldehyde was due to the decrease in essential amino acids. Histidine, methionine and lysine were decreased 45.71 %; 20.46 %; 34.90 % on red meat, 35.56 %; 27.83 %; 12.87 % on white meat respectively. Different chemical composition of red and white meat of tuna was to be the protein of red meat rapidly oxidation damage than that of white meat.ABSTRAKPenggunaan bahan kimia berbahaya dalam proses penanganan, produksi maupun pengolahan produk - produk hasil perikanan beberapa tahun terakhir ini dapat merupakan salah satu pemicu terjadinya oksidasi maupun modifikasi struktur protein daging ikan yang memberikan dampak langsung terhadap kualitas gizi hasil perikanan terutama protein ikan. Sebagai contoh adalah penggunaan formalin sebagai bahan pengawet ikan.oleh para nelayan dibeberapa daerah pesisir di Indonesia. Pendekatan yang dilakukan dalam penelitian ini adalah dengan melakukan percobaan secara invitro dengan menggunakan model berupa preparat protein daging merah dan putih dari ikan Tuna (Thunus Sp). Penelitian ini bertujuan untuk mengkaji pengaruh konsentrasi formaldehid yang digunakan serta dampak interaksinya dengan protein terhadap pembentukan protein karbonil, penurunan protein terlarut dan terjadinya denaturasi protein (modifikasi srtuktur) protein serta kandungan asam amino dari protein daging merah dan putih ikan Tuna. Hasil penelitian menunjukkan konsentrasi formaldehid berpengaruh sangat nyata terhadap pembentukan protein karbonil, penurunan protein terlarut serta terjadinya denaturasi protein (modifikasi struktur) pada daging merah maupun daging putih dari ikan Tuna. Dampak interaksi antara protein dengan formaldehid menyebabkan terjadinya penurunan yang signifikan pada beberapa asam amino esensial seperti histidin, metionin dan lisin yaitu sebesar 45,71 %; 20,46 %; 34,90 % pada daging merah dan 35,56 %; 27,83 %; 12,87 % pada daging putih. Adanya perbedaan komposisi kimia antara daging merah dan daging putih dari ikan Tuna menyebabkan protein daging merah cenderung lebih cepat mengalami kerusakan oksidatif bila dibandingkan dengan daging putih

    KUALITAS NUTRISI DAGING TUNA LOIN DENGAN PENGGUNAAN CARBON MONOKSIDA (CO) DAN CLEAR SMOKE (CS)

    Get PDF
    Abstrak - Tujuan penelitian ini adalah untuk mengetahui (1) komposisi proksimat, kandungan asam amino dan asam lemak dari ikan tuna loin dengan penggunaan gas CO dan CS (2) kualitas protein dan asam lemak ikan tuna loin. Penelitian terdiri dari dua tahap. Tahap I, analisa proksimat : air, abu, protein, lemak, karbohidrat. Analisa profil asam aminodan asam lemak.. Tahap II, analisa kualitas protein dan lemak. Prediksi Protein Efisiensi Ratio (P-PER) digunakan untuk analisis kualitas protein sedangkan kualitas lemak dengan Indeks Atherogenik (AI), Indeks Thrombogenik (TI), Rasio hipokolesterolemik/hiperkolesterolemia (h/H) dan Polien Indeks (PI). Hasil penelitian menunjukkan bahwa komposisi kimia daging tuna loin  lama penyimpanan minggu 1 dengan kisaran sebagai berikut, kadar air 64.34-69.02%, kadar abu 1.88-2.20%, kadar lemak 0.03-0.17%, kadar protein 23.09-25.19%, dan karbohidrat 4.85-8.04%. sedangkan untuk daging tuna loin dengan penyimpanan minggu ke 4 komposisi kimia sebagai berikut kadar air 62.86-67.74%, kadar abu 1.37-1.57%, kadar lemak 0.07- 0.44%, kadar protein 21.78-25.27% dan karbohidrat 7.93-11.83%. Terdapat 15 jenis asam amino, terdiri dari 9 jenis asam amino esensial dan 6 jenis asam amino non esensial. 30 jenis asam lemak, terdiri dari 13 jenis asam lemak jenuh (SFA), 7 jenis asam lemak tunggal (MUFA) dan 10 jenis asam lemak tak jenuh jamak (PUFA). Kualitas protein pada tuna loin dikategorikan protein yang berkualitas rendah (Kisaran 0,13-0,27). Kualitas lemak ikan tuna loin dengan Indeks Atherogenik (AI) dan Indeks Thrombogenik (TI) dalam kategori baik (kisaran 0,54-1,72) dan (kisaran 0,47-0,85) berdasarkan nilai AI dan TI. Rasio hipokolesterolemik / hipokolesterolemia menunjukkan tertinggi pada tuna loin dengan pemberian gas CO penyimpanan minggu keempat (1,92), tuna loin dengan pemberian gas Filter smoke penyimpanan minggu keempat (1,81) dan tuna loin dengan pemberian gas limbah produksi asap cair penyimpanan minggu keempat (1,72) yang dikategorikan kolesterol baik. Polien Indeks tertinggi pada ikan tuna loin dengan pemberian gas limbah produksi asap cair penyimpanan minggu keempat (1,12), tuna loin dengan pemberian gas carbon monoksida penyimpanan minggu pertama ( 0,85) dan tuna loin dengan pemberian gas filter smoke penyimpanan minggu pertama (0,84). Kata Kunci :  P-PER. Indeks Atherogenik (AI), Indeks Thrombogenik (TI), Rasio  hipokolesterolemik, Polien Indeks (PI) , Carbon Monoksida (CO), Clear Smoke (CS).   Abstract -  The study consisted of two phases. Phase (1)  proximate analysis: water, ash, protein, fat, carbohydrates. Phase (2) the analysis of the quality of protein and fat. Prediction of Protein Efficiency Ratio (P-PER) is used for the analysis of protein quality while the quality of the fat with atherogenic index (AI), Thrombogenik Index (TI), Ratio hypocholesterolemic / hypercholesterolemic (H / H) and Polien Index (PI). Research shows that the chemical composition of tuna loin, a week storage of just as follws, water of 64.34-67.02 %, ashes of 1.88-2.20%, fatty of 0.03-0.17%, protein of 23.09-25.19% and carbohydrate of 4.85-8.04%. as for tuna loin, with fourth week’s chemical storage, as well as water of 62.86 – 67.74%, ash of 1.37-1.57%, fat of 0.07-0.44%, protein of 21.78-25.27% and carbohydrate of 7.93-11.83%. There are 15 types of amino acids, consisting of 9 types of essential amino acids and 6 types of nonessential amino acid. 30 types of fatty acids, consisting 13 types of saturated fatty acids (SFA), 7 types of mono unsaturated fatty acids (MUFA) and 10 types of poly unsaturated fatty acids (PUFA). The protein quality of loin tuna is listed as low quality protein ( range 0.13-0.27). The fat quality of the tuna loin with the  Artherogenic Index and Thrombogenic Index in good (range 0.54-1.72) and (range 0.47-0.85) by AI and TI. The high level cholesterol/hypocholeterol rate indicates that the high price of loin tuna is paid four week’s supply of come-to-deposit, non-deposit, and liquidity. The highest index on tuna loin by delivering waste gas produced by fourth week’s storage liquid smoke, tuna loin by first week’s carbon monoxide and tuna loin with first-week smoke filter. Keywords :   P-PER. Atherogenic index (AI), Thrombogenik Index (TI), Ratio hypocholesterolemic, Polien Index (PI

    Struktur Bahasa Ternate

    Get PDF

    Cloud detection and classification based on MAX-DOAS observations

    Get PDF
    Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of aerosols and trace gases can be strongly influenced by clouds. Thus, it is important to identify clouds and characterise their properties. In this study we investigate the effects of clouds on several quantities which can be derived from MAX-DOAS observations, like radiance, the colour index (radiance ratio at two selected wavelengths), the absorption of the oxygen dimer O<sub>4</sub> and the fraction of inelastically scattered light (Ring effect). To identify clouds, these quantities can be either compared to their corresponding clear-sky reference values, or their dependencies on time or viewing direction can be analysed. From the investigation of the temporal variability the influence of clouds can be identified even for individual measurements. Based on our investigations we developed a cloud classification scheme, which can be applied in a flexible way to MAX-DOAS or zenith DOAS observations: in its simplest version, zenith observations of the colour index are used to identify the presence of clouds (or high aerosol load). In more sophisticated versions, other quantities and viewing directions are also considered, which allows subclassifications like, e.g., thin or thick clouds, or fog. We applied our cloud classification scheme to MAX-DOAS observations during the Cabauw intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) campaign in the Netherlands in summer 2009 and found very good agreement with sky images taken from the ground and backscatter profiles from a lidar

    How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Get PDF
    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The trajectories qualitatively explain the temporal evolution of the intrusion layers above the four stations participating in the campaign

    Struktur Sastra Lisan Tontemboan

    Get PDF

    Observations of turbulence-induced new particle formation in the residual layer

    Get PDF
    Aerosol particle measurements in the atmospheric boundary layer performed by a helicopter-borne measurement payload and by a lidar system from a case study during the IMPACT field campaign in Cabauw (NL) are presented. Layers of increased number concentrations of ultrafine particles were observed in the residual layer, indicating relatively recent new-particle formation. These layers were characterized by a sub-critical Richardson number and concomitant increased turbulence. Turbulent mixing is likely to lead to local supersaturation of possible precursor gases which are essential for new particle formation. Observed peaks in the number concentrations of ultrafine particles at ground level are connected to the new particle formation in the residual layer by boundary layer development and vertical mixing

    Karakteristik dan Profil Asam Lemak Minyak Ikan dari Kepala dan Tulang Ikan Tuna (Thunnus albacares)

    Get PDF
    This study was aimed to determine the physical and chemical quality as well as the fatty acid profile of fish oil from the waste of the head and the bones of&nbsp;Thunnus albacares. An experimental method was applied in this research. Observed variables included yield, density, acid number, saponification value, iodine number, TBA value, as well as fatty acid profile. The results showed that the physical characteristics of the oil from the head and bone of the fish, i.e., yield 12,11% and 9.85%, density 0.92 mg/mL, and 0.90 mg/mL, respectively. The chemical characteristics of the oil from head and bones of tuna were acid number 2.10 mg KOH/g and 2.88 mg KOH/g, iodine number 88.80 mg KOH/g and 77.67 mg KOH/g; saponification number 178.80 mg KOH/g and 145.50 mg KOH/g, TBA values 1.80 mg KOH/kg and 1.29 mg KOH/kg, subsequently. Unsaturated fatty acids were found to dominate oil from the head and bones of tuna. Tuna head contained 25 types of fatty acids consisting of 10 types of saturated fatty acids (SFA) 20.8% w/w, seven types of monounsaturated fatty acids (MUFA) 11.92% w/w, eight polyunsaturated fatty acids (PUFA) 35.98% w/w. In comparison, tuna bones contained 26 types of fatty acids consisting of 11 SFA 19.69% w/w, seven MUFA 10.80% w/w, and 8 PUFA 26.21% w/w. Keywords: fatty acid, fish oil, Thunnus albacares, waste of head and bone &nbsp; ABSTRAK Penelitian ini bertujuan untuk mengetahui kualitas fisik maupun kimiawi serta profil asam lemak minyak limbah ikan dari kepala dan tulang ikan tuna (Thunnus albacares). Metode yang digunakan adalah metode eksperimen. Parameter yang diamati yaitu: rendemen, berat jenis minyak, bilangan penyabunan, bilangan iodin, bilangan Tiobarbituric Acid (TBA) serta profil asam lemak. Hasil penelitian menunjukkan karakteristik fisik dari kepala dan tulang ikan berturut-turut adalah: rendemen 12,11 dan 9,85%; berat jenis minyak 0,92 mg/mL dan 0,90 mg/mL. Karakteristik kimia dari kepala dan tulang ikan tuna adalah berturut-turut: bilangan asam 2,10 mg KOH/g dan 2,88 mg KOH/g; bilangan iod 88,80 mg KOH/g dan 77,67 mg KOH/g; bilangan penyabunan 178,80 mg KOH/g dan 145,50 mg KOH/g; nilai TBA 1,80 mg KOH/kg dan 1,29 mg KOH/kg. Asam lemak tidak jenuh mendominasi minyak dari kepala maupun tulang ikan Tuna. Kepala ikan tuna mengandung 25 jenis asam lemak terdiri dari 10 jenis asam lemak jenuh (SFA) 20,8% w/w, 7 jenis lemak tak jenuh tunggal (MUFA) 11,92% w/w, 8 asam lemak tak jenuh jamak (PUFA) 35,98% w/w; sedangkan tulang ikan Tuna mengandung 26 jenis asam lemak terdiri dari 11 SFA 19,69% w/w, 7 MUFA 10,80% w/w, dan 8 PUFA 26,21% w/w. Kata kunci: asam lemak, minyak ikan, Thunnus albacares, limbah tulang dan kepal
    corecore