4,957 research outputs found

    Refactoring Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly

    Full text link
    JavaScript systems are becoming increasingly complex and large. To tackle the challenges involved in implementing these systems, the language is evolving to include several constructions for programming- in-the-large. For example, although the language is prototype-based, the latest JavaScript standard, named ECMAScript 6 (ES6), provides native support for implementing classes. Even though most modern web browsers support ES6, only a very few applications use the class syntax. In this paper, we analyze the process of migrating structures that emulate classes in legacy JavaScript code to adopt the new syntax for classes introduced by ES6. We apply a set of migration rules on eight legacy JavaScript systems. In our study, we document: (a) cases that are straightforward to migrate (the good parts); (b) cases that require manual and ad-hoc migration (the bad parts); and (c) cases that cannot be migrated due to limitations and restrictions of ES6 (the ugly parts). Six out of eight systems (75%) contain instances of bad and/or ugly cases. We also collect the perceptions of JavaScript developers about migrating their code to use the new syntax for classes.Comment: Paper accepted at 16th International Conference on Software Reuse (ICSR), 2017; 16 page

    Heat conduction and Wiedemann-Franz Law in disordered Luttinger Liquids

    Full text link
    We consider heat transport in a Luttinger liquid (LL) with weak disorder and study the Lorenz number for this system. We start at a high-TT regime, and calculate both the electrical and thermal conductivities using a memory function approach. The resulting Lorenz number LL is independent of TT but depends explicitly on the LL exponents. Lowering TT, however, allows for a renormalization of the LL exponents from their bare values by disorder, causing a violation of the Wiedemann-Franz law. Finally, we extend the discussion to quantum wire systems and study the wire size dependence of the Lorenz number.Comment: 4 pages, 1 eps figure; Changes made to address Referees' comment

    Spatially anisotropic Heisenberg Kagome antiferromagnet

    Full text link
    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the Sp(N) symmetric generalisation of this model in the large N limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long range order and a decoupled chain phase emerges.Comment: 6 pages, 6 figures, proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of cuprates

    Get PDF
    We propose that the dissipative dynamics of topological defects in a spiral state is responsible for the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method, we show that topological defects are coupled to a bath of magnetic excitations. By integrating out the bath degrees of freedom, we find that the dynamical properties of the topological defects are dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an anisotropy and linear temperature dependence in agreement with experimental data.Comment: 4 pages, as publishe

    Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity

    Get PDF
    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m<sup>2</sup>/h and 4.7±2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)

    Nuclear Spin Relaxation for Higher Spin

    Full text link
    We study the relaxation of a spin I that is weakly coupled to a quantum mechanical environment. Starting from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic approximation. These are valid for arbitrary I and also for a general stationary non--equilibrium state of the environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltzmannian equilibrium distribution for given spin I. The relaxation towards the stationary solution is characterized by a set of relaxation times, the longest of which can be shorter, by a factor of up to 2I, than the relaxation time in the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure

    Constructive factorization of LPDO in two variables

    Full text link
    We study conditions under which a partial differential operator of arbitrary order nn in two variables or ordinary linear differential operator admits a factorization with a first-order factor on the left. The factorization process consists of solving, recursively, systems of linear equations, subject to certain differential compatibility conditions. In the generic case of partial differential operators one does not have to solve a differential equation. In special degenerate cases, such as ordinary differential, the problem is finally reduced to the solution of some Riccati equation(s). The conditions of factorization are given explicitly for second- and, and an outline is given for the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005

    Comment on "Spin relaxation in quantum Hall systems"

    Full text link
    W. Apel and Yu.A. Bychkov have recently considered the spin relaxation in a 2D quantum Hall system for the filling factor close to unity [PRL v.82, 3324 (1999)]. The authors considered only one spin flip mechanism (direct spin-phonon coupling) among several possible spin-orbit related ones and came to the conclusion that the spin relaxation time due to this mechanism is quite short: around 10−1010^{-10} s at B=10 T (for GaAs). This time is much shorter than the typical time (10−510^{-5} s) obtained earlier by D. Frenkel while considering the spin relaxation of 2D electrons in a quantizing magnetic field without the Coulomb interaction and for the same spin-phonon coupling. I show that the authors' conclusion about the value of the spin-flip time is wrong and have deduced the correct time which is by several orders of magnitude longer. I also discuss the admixture mechanism of the spin-orbit interaction.Comment: 1 pag
    • …
    corecore