9 research outputs found

    Synthesis of cerium, zirconium, and copper doped zinc oxide nanoparticles as potential biomaterials for tissue engineering applications

    Get PDF
    A novel eco-friendly high throughput continuous hydrothermal flow system was used to synthesise phase pure ZnO and doped ZnO in order to explore their properties for tissue engineering applications. Cerium, zirconium, and copper were introduced as dopants during flow synthesis of ZnO nanoparticles, Zirconium doped ZnO were successfully synthesised, however secondary phases of CeO and CuO were detected in X-ray diffraction (XRD). The nanoparticles were characterised using X-ray diffraction, Brunauer-Emmett-Teller (BET), Dynamic Light scattering Measurements, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and RAMAN spectroscopy was used to evaluate physical, chemical, and structural properties. The change in BET surface area was also significant, the surface area increased from 11.35 (ZnO_2) to 26.18 (ZrZnO_5). However. In case of CeZnO_5 and CuZnO_5 was not significant 13.68 (CeZnO_5) and 12.16 (CuZnO_5) respectively. Cell metabolic activity analysis using osteoblast-like cells (MG63) and human embryonic derived mesenchymal stem cells (hES-MP) demonstrated that doped ZnO nanoparticles supported higher cell metabolic activity compared to cells grown in standard media with no nanoparticles added, or pure zinc oxide nanoparticles. The ZrZnO_5 demonstrated the highest cell metabolic activity and non-cytotoxicity over the duration of 28 days as compared to un doped or Ce or Cu incorporated nanoparticles. The current data suggests that Zirconium doping positively enhances the properties of ZnO nanoparticles by increasing the surface area and cell proliferation. Therefore, are potential additives within biomaterials or for tissue engineering applications

    MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    Get PDF
    Representative images of “Comets” and the corresponding intensity profiles, showing (i) ~ 5% Tail DNA damage, typical of the NSCLC cells treated with no siRNA or scramble siRNA, and analysed by regular Fpg-modified alkaline comet assay (0.8 U Fpg/gel); and (ii) comets showing ~ 10% tail DNA, typical of the NSCLC cells treated with MTH1 siRNA. Superimposed on the Comet images are the image analysis software (Komet 5.5, Andor Technology) determined boundaries demarcating the ‘Comet head’ (pink circle) and ‘tail extent’ (vertical orange line) (Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006;25(56):7336–7342). % tail DNA = 100 - % head DNA; % head DNA = (integrated optical head intensity / (integrated optical head intensity + integrated optical tail intensity)) × 100. (PDF 1431 kb

    Efficacy and safety of once daily tacrolimus compared to twice daily tacrolimus after liver transplantation

    No full text
    BACKGROUND Once daily tacrolimus regimen was found to exhibits similar bioavailability, safety and efficacy properties compared to twice-daily tacrolimus in kidney transplantation patients. AIM To compare the efficacy and safety of once-daily prolonged release tacrolimus compared to twice-daily tacrolimus in liver transplantation patients. METHODS MEDLINE, EMBASE, CENTRAL databases were searched for clinical trials until December 2020. Efficacy outcome measured as the rate of treatment failure indicated by biopsy-proven acute rejection, Serum creatinine, graft loss, or death. Two reviewers independently selected studies, collected data and assessed risk of bias. The results are reported as risk ratio with 95% confidence interval (CI) for dichotomous data. RESULTS Seven studies included with 965 patients. All the included studies were of moderate quality according to the risk of bias assessment using Cochrane Risk of Bias tool. Biopsy-proven acute rejection was reported in four studies, and pooled analysis of those studies indicated similar rejections in both twice daily and once daily tacrolimus groups (risk ratio: 1.06, 95%CI: 0.84-1.34, n = 758, I2 = 0%) and also we found no significant difference between both groups for renal outcome (serum creatinine; mean difference, 0.001 mg/dL, 95%CI: -0.042 to 0.043, n = 846, I2 = 18.6%). Similarly, there was similar number of adverse events such as hypertension, headache, back pain, blood related disorders, infections and nausea observed in both groups. CONCLUSION The analysis findings confirm that both once daily and twice daily tacrolimus formulations are comparable in terms of efficacy and safety outcomes

    Surgical Protocols before and after COVID-19—A Narrative Review

    No full text
    The COVID-19 epidemic has affected not only people’s daily lives but also the working methods of clinicians, surgical procedures, open/minimally invasive procedures, operating room management, patient and healthcare worker safety, education and training. The main objective of this study was to review selected articles and determine the changes in the general surgery protocols/procedures before and after the emergence of the COVID-19 pandemic. The literature was carried out in PubMed-Medline, Cochrane Library, Embase, Scopus and Google Scholar. The terms utilised for the searches were “SARS-CoV-2”, “Surgery”, “COVID-19”, “Surgical protocol”, “Surgical recommendations” and “before and after”. A total of 236 studies were identified, out of which 41 studies were included for data extraction. Significant changes in all the articles were observed with respect to the surgeries done before, during and after the COVID-19 pandemic. Specifically, the number of elective surgeries were considerably fewer in comparison to the pre-pandemic period. Since the COVID-19 pandemic started, hospitals all throughout the world have conducted significantly fewer procedures, particularly elective/non-urgent surgeries

    Retentive Forces and Deformation of Fitting Surface in RPD Clasp Made of Polyether-Ether-Ketone (PEEK)

    No full text
    Background: Polyetheretherketone (PEEK) has provided the option to fabricate RPDs with aesthetics unlike metal RPDs, but little attention has been paid to its suitability, especially towards the retentive forces and deformation of the clasp. This study aimed to examine the retentive forces and the fitting surface (inner surface) deformation of clasps made from PEEK and compare it with cobalt–chromium (Co-Cr) clasp. Methods: Forty-two circumferential clasps (14 Co-Cr and 28 PEEK) were fabricated and divided into two groups with clasp undercuts (0.25 mm and 0.5 mm) with thicknesses of 1 mm and 1.5 mm. Each was examined for retentive forces after cycle test on its abutment for 360 cycles. Initial and final retentive forces were recorded. The fitting surface deformation was determined using 3-Matic research analysis software. Results: The results revealed that highest mean initial retentive force was of Co-Cr clasps with 0.50 mm undercut 22.26 N (±10.15 N), and the lowest was the 1 mm PEEK clasps with 0.25 mm undercut 3.35 N (±0.72 N) and highest mean final retentive force was the Co-Cr clasps with 0.50 mm undercut 21.40 N (±9.66 N), and the lowest was the 1 mm PEEK clasps with 0.25 mm undercut 2.71 N (±0.47 N). PEEK clasps had a lower retentive force than Co-Cr clasps with 0.50 undercut. PEEK clasps (1.5 mm) at 0.25 mm undercut had the least deformation (35.3 µm). PEEK showed significantly less deformation (p ≤ 0.014) than Co-Cr. Conclusion: The deformation of PEEK clasps fitting surface was lower than Co-Cr clasps and retentive forces were close to the Co-Cr clasps, suggesting the use of PEEK as an aesthetic clasp option for RPD framework
    corecore