319 research outputs found
Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: A methods review
First published: 25 April 2020Neurofeedback training using real-time functional magnetic resonance imaging
(rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity.
It has sparked increased interest as a promising non-invasive treatment option in
neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance
are yet to be determined. In this work, we present the first extensive review
of acquisition, processing and quality control methods available to improve the quality
of the neurofeedback signal. Furthermore, we investigate the state of denoising
and quality control practices in 128 recently published rtfMRI-NF studies. We found:
(a) that less than a third of the studies reported implementing standard real-time
fMRI denoising steps, (b) significant room for improvement with regards to methods
reporting and (c) the need for methodological studies quantifying and comparing the
contribution of denoising steps to the neurofeedback signal quality. Advances in
rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic
effort is needed to build up evidence that disentangles the various mechanisms
influencing neurofeedback effects. To this end, we recommend that future
rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising
steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/),
(b) ensure the quality of the neurofeedback signal by calculating and reporting
community-informed quality metrics and applying offline control checks and (c) strive
to adopt transparent principles in the form of methods and data sharing and support
of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an
interactive environment to explore the study data, can be accessed at https://github.
com/jsheunis/quality-and-denoising-in-rtfmri-nf.LSH‐TKI, Grant/Award Number: LSHM16053‐SGF; Philips Researc
Requirements for generic anti-epileptic medicines: a regulatory perspective
Contains fulltext :
81660.pdf (publisher's version ) (Closed access
Comparison of tolerability and adverse symptoms in oxcarbazepine and carbamazepine in the treatment of trigeminal neuralgia and neuralgiform headaches using the Liverpool Adverse Events Profile (AEP)
Background
Adverse effects of drugs are poorly reported in the literature . The aim of this study was to examine the frequency of the adverse events of antiepileptic drugs (AEDs), in particular carbamazepine (CBZ) and oxcarbazepine (OXC) in patients with neuralgiform pain using the psychometrically tested Liverpool Adverse Events Profile (AEP) and provide clinicians with guidance as to when to change management.
Methods
The study was conducted as a clinical prospective observational exploratory survey of 161 patients with idiopathic trigeminal neuralgia and its variants of whom 79 were on montherapy who attended a specialist clinic in a London teaching hospital over a period of 2 years. At each consultation they completed the AEP questionnaire which provides scores of 19–76 with toxic levels being considered as scores >45.
Results
The most common significant side effects were: tiredness 31.3 %, sleepiness 18.2 %, memory problems 22.7 %, disturbed sleep 14.1 %, difficulty concentrating and unsteadiness 11.6 %. Females reported significantly more side effects than males. Potential toxic dose for females is approximately 1200 mg of OXC and 800 mg of CBZ and1800mg of OXC and 1200 mg of CBZ for males.
Conclusions
CBZ and OXC are associated with cognitive impairment. Pharmacokinetic and pharmacodynamic differences are likely to be the reason for gender differences in reporting side effects. Potentially, females need to be prescribed lower dosages in view of their tendency to reach toxic levels at lower dosages.
Side effects associated with AED could be a major reason for changing drugs or to consider a referral for surgical management
A Study on the Validity of a Computer-Based Game to Assess Cognitive Processes, Reward Mechanisms, and Time Perception in Children Aged 4-8 Years
BACKGROUND: A computer-based game, named Timo's Adventure, was developed to assess specific cognitive functions (eg, attention, planning, and working memory), time perception, and reward mechanisms in young school-aged children. The game consists of 6 mini-games embedded in a story line and includes fantasy elements to enhance motivation. OBJECTIVE: The aim of this study was to investigate the validity of Timo's Adventure in normally developing children and in children with attention-deficit/hyperactivity disorder (ADHD). METHODS: A total of 96 normally developing children aged 4-8 years and 40 children with ADHD were assessed using the game. Clinical validity was investigated by examining the effects of age on performances within the normally developing children, as well as performance differences between the healthy controls and the ADHD group. RESULTS: Our analyses in the normally developing children showed developmental effects; that is, older children made fewer inhibition mistakes (r=-.33, P=.001), had faster (and therefore better) reaction times (r=-.49, P<.001), and were able to produce time intervals more accurately than younger children (ρ=.35, P<.001). Discriminant analysis showed that Timo's Adventure was accurate in most classifications whether a child belonged to the ADHD group or the normally developing group: 78% (76/97) of the children were correctly classified as having ADHD or as being in the normally developing group. The classification results showed that 72% (41/57) children in the control group were correctly classified, and 88% (35/40) of the children in the ADHD group were correctly classified as having ADHD. Sensitivity (0.89) and specificity (0.69) of Timo's Adventure were satisfying. CONCLUSIONS: Computer-based games seem to be a valid tool to assess specific strengths and weaknesses in young children with ADHD
Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats
Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se
- …