4,866 research outputs found

    ESTUDIO DEL COMPORTAMIENTO ESTRUCTURAL DE LOSAS MACIZAS DE CONCRETO REFORZADO PARA VIVIENDA

    Get PDF
    A partir de resultados analíticos de ejemplos ilustrativos y del reporte de características observadas, quedó demostradoque las losas macizas de concreto reforzado para vivienda no son diseñadas ni construidas adecuadamente en el ámbitode la zona de estudio, lo que explica los altos porcentajes de fallas observadas en servicio. Fue calculado el índice deconfiabilidad en seis viviendas representativas al considerar tres posibles escenarios de la corrosión del acero de refuerzo,con lo que se mostró un alto riesgo de falla o cuantiosas inversiones en mantenimiento. Se concluyó que para el correctodiseño de las losas deberá no sólo revisarse la resistencia a flexión sino principalmente controlar las deformacionesverticales, el agrietamiento por contracción y la permeabilidad, lo cual implica especificar un concreto denso y durable.Se presentan recomendaciones específicas

    The Chrono-geometrical Structure of Special and General Relativity: a Re-Visitation of Canonical Geometrodynamics

    Get PDF
    A modern re-visitation of the consequences of the lack of an intrinsic notion of instantaneous 3-space in relativistic theories leads to a reformulation of their kinematical basis emphasizing the role of non-inertial frames centered on an arbitrary accelerated observer. In special relativity the exigence of predictability implies the adoption of the 3+1 point of view, which leads to a well posed initial value problem for field equations in a framework where the change of the convention of synchronization of distant clocks is realized by means of a gauge transformation. This point of view is also at the heart of the canonical approach to metric and tetrad gravity in globally hyperbolic asymptotically flat space-times, where the use of Shanmugadhasan canonical transformations allows the separation of the physical degrees of freedom of the gravitational field (the tidal effects) from the arbitrary gauge variables. Since a global vision of the equivalence principle implies that only global non-inertial frames can exist in general relativity, the gauge variables are naturally interpreted as generalized relativistic inertial effects, which have to be fixed to get a deterministic evolution in a given non-inertial frame. As a consequence, in each Einstein's space-time in this class the whole chrono-geometrical structure, including also the clock synchronization convention, is dynamically determined and a new approach to the Hole Argument leads to the conclusion that "gravitational field" and "space-time" are two faces of the same entity. This view allows to get a classical scenario for the unification of the four interactions in a scheme suited to the description of the solar system or our galaxy with a deperametrization to special relativity and the subsequent possibility to take the non-relativistic limit.Comment: 33 pages, Lectures given at the 42nd Karpacz Winter School of Theoretical Physics, "Current Mathematical Topics in Gravitation and Cosmology", Ladek, Poland, 6-11 February 200

    Acoustic Identification of Liquefaction Potential

    Get PDF
    The interparticle arrangement, or fabric, of sands is a key determinant of sample rigidity. This rigidity, in large part, determines the velocity and attenuation of acoustic transmissions in a test specimen, as well as its resistance to liquefaction. Utilizing high frequency small-amplitude compressional wave transmissions, different fabric arrangements of standard triaxial samples of the same sand have been reliably identified from their acoustic response. Both the compressional wave velocity and attenuation were used to determine the acoustic signature of a sample. Cyclic triaxial testing of the same laboratory-prepared samples revealed that there is direct relationship between the acoustic response of a sample prepared by a particular method and its resistance to liquefaction. The effect of stress history, induced by pre-shaking, on the resistance to liquefaction of a test sample was also detected by changes in the acoustic signature

    Advances in enhanced sampling along adaptive paths of collective variables

    Get PDF
    Study of complex activated molecular transitions by molecular dynamics (MD) simulation can be a daunting task, especially when little knowledge is available on the reaction coordinate describing the mechanism of the process. Here, we assess the path-metadynamics enhanced sampling approach in combination with force field and ab initio [density functional theory (DFT)] MD simulations of conformational and chemical transitions that require three or more collective variables (CVs) to describe the processes. We show that the method efficiently localizes the average transition path of each process and simultaneously obtains the free energy profile along the path. The new multiple-walker implementation greatly speeds-up the calculation, with an almost trivial scaling of the number of parallel replicas. Increasing the dimensionality by expanding the set of CVs leads to a less than linear increase in the computational cost, as shown by applying the method to a conformational change in increasingly longer polyproline peptides. Combined with DFT-MD to model acid (de-)protonation in explicit water solvent, the transition path and associated free energy profile were obtained in less than 100 ps of simulation. A final application to hydrogen fuel production catalyzed by a hydrogenase enzyme showcases the unique mechanistic insight and chemical understanding that can be obtained from the average transition path. Published by AIP Publishing

    An Efficient Implementation of the Gauss-Newton Method Via Generalized Krylov Subspaces

    Get PDF
    The solution of nonlinear inverse problems is a challenging task in numerical analysis. In most cases, this kind of problems is solved by iterative procedures that, at each iteration, linearize the problem in a neighborhood of the currently available approximation of the solution. The linearized problem is then solved by a direct or iterative method. Among this class of solution methods, the Gauss-Newton method is one of the most popular ones. We propose an efficient implementation of this method for large-scale problems. Our implementation is based on projecting the nonlinear problem into a sequence of nested subspaces, referred to as Generalized Krylov Subspaces, whose dimension increases with the number of iterations, except for when restarts are carried out. When the computation of the Jacobian matrix is expensive, we combine our iterative method with secant (Broyden) updates to further reduce the computational cost. We show convergence of the proposed solution methods and provide a few numerical examples that illustrate their performance

    Evanescent field optical readout of graphene mechanical motion at room temperature

    Get PDF
    Graphene mechanical resonators have recently attracted considerable attention for use in precision force and mass sensing applications. To date, readout of their oscillatory motion has typically required cryogenic conditions to achieve high sensitivity, restricting their range of applications. Here we report the first demonstration of evanescent optical readout of graphene motion, using a scheme which does not require cryogenic conditions and exhibits enhanced sensitivity and bandwidth at room temperature. We utilise a high QQ microsphere to enable evanescent readout of a 70 μ\mum diameter graphene drum resonator with a signal-to-noise ratio of greater than 25 dB, corresponding to a transduction sensitivity of SN1/2=S_{N}^{1/2} = 2.6 ×10−13\times 10^{-13} m Hz−1/2\mathrm{Hz}^{-1/2}. The sensitivity of force measurements using this resonator is limited by the thermal noise driving the resonator, corresponding to a force sensitivity of Fmin=1.5×10−16F_{min} = 1.5 \times 10^{-16} N Hz−1/2{\mathrm{Hz}}^{-1/2} with a bandwidth of 35 kHz at room temperature (T = 300 K). Measurements on a 30 μ\mum graphene drum had sufficient sensitivity to resolve the lowest three thermally driven mechanical resonances.Comment: Fixed formatting errors in bibliograph
    • …
    corecore