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The zipper-like helix

handedness transition of
polyproline chains

Caminante, no hay camino,
se hace camino al andar.

Antonio Machado y Joan Manuel Serrat

Study of complex activated molecular transitions by molecular dynamics (MD) sim-
ulation can be a daunting task, especially when little knowledge is available on
the reaction coordinate describing the mechanism of the process. Here, we assess
the path-metadynamics (PMD) enhanced sampling approach in combination with
force-field MD simulations of conformational transitions that require three or more
collective variables (CVs) to describe the processes. We show that the method ef-
ficiently localizes the average transition path of each process and simultaneously
obtains the free-energy profile along the path. The new multiple-walker implemen-
tation greatly speeds-up the calculation, with an almost trivial scaling of the number
of parallel replicas. Increasing the dimensionality by expanding the set of CVs leads
to a less than linear increase in the computational cost, as shown by applying the
method to a conformational change in increasingly longer polyproline peptides.

Based on: A. Pérez de Alba Ortíz, A. Tiwari, R.C. Puthenkalathil, and B. Ensing. Advances
in enhanced sampling along adaptive paths of collective variables. J. Chem. Phys. 149, 072320
(2018).
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4.1. Introduction
Path-metadynamics (PMD) [1] is an effective means to enhance the sampling of ac-
tivated molecular transitions in a molecular dynamics (MD) simulation. The proba-
bility to observe an activated process, such as a chemical reaction, a conformational
change, or a phase transition, during an unbiased MD simulation, decreases expo-
nentially with the height of the activation free energy, or transition state barrier,
of the process. This so-called rare event problem has led to the development of a
plethora of enhanced sampling techniques that can roughly be subdivided into three
classes: (1) those that bias the dynamics with an external potential or force applied
to a geometric descriptor, or collective variable (CV), of the process (e.g. [2–6]),
(2) those that focus on locating reactive trajectories or optimized transition paths
(e.g. [7–13]), and (3) those that enhance the dynamics by raising the temperature of
(part of) the system (e.g. [14–16]). PMD combines ideas from the first two classes.

The metadynamics method [4] belongs to the first class of enhanced sampling
methods. During an MD simulation, it constructs a repulsive bias potential that
“fills” free-energy minima, such that barriers in the free energy can be overcome
and a free-energy profile can be computed a posteriori from the final metadynamics
bias potential. A difficulty with “class one” approaches can be the requirement of
choosing an adequate CV that functions as the reaction coordinate. An imperfect
choice for the CV is one that omits essential degrees of freedom for the description
of the transition, which typically leads to poor convergence and hysteresis problems
for the free-energy estimation. Metadynamics has the advantage that it can handle
several CVs simultaneously in a trivial manner, which alleviates somewhat the issue
of knowing a priori the reaction coordinate; instead only an appropriate set of CVs
is needed. The result is then an insightful multidimensional free-energy landscape,
in which the (meta-)stable states and the connecting minimum free-energy paths
(MFEPs) can be located [17]. In practice however, the number of CVs is limited
to about three for any but the simplest of applications [18], due to the unfavorable
scaling of the computational cost with the dimensionality.

To deal with complex transitions that require many CVs, the PMD method
was developed. Here, an extra “path-CV” is introduced, which is a parametrized
curve that connects the stable states and is defined in the space of the other CVs
that describe the transition. Since a priori the transition path is not known, one
starts with a guess path, which is then optimized during the PMD simulation to
the average transition path. The key advantage is that the metadynamics biasing is
now performed on the one-dimensional progress parameter along the path, so that
in principle a large set of CVs can be used.

Since its introduction, the PMD method has evolved with several new features
and with the implementation of the algorithm in the freely available PLUMED
software [19], so that it can be used with various popular MD codes. The aim of
this work is to assess the performance of PMD to find the average transition path
and obtain the associated free-energy profile for complex molecular transitions. We
will do this at the hand of an illustrative example.

In our case study, we introduce the multiple-walker version of PMD, which paral-
lelizes the path optimization algorithm, and apply it to simulate the conformational
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transition in polyproline peptides from a right-handed helix to a left-handed he-
lix. By systematically increasing the polypeptide length, we investigate the PMD
performance with increasing numbers of dihedral angle CVs.

Two additional case studies are presented in the publication on which this chapter
is based [20]. In these examples, PMD is applied together with ab initio MD, based
on density functional theory (DFT), to sample chemical transitions. In the first
of these cases, we investigate the deprotonation of acetic acid in aqueous solution.
PMD allows to converge a reaction mechanism and a free-energy profile in only a
few tens of ps of simulation time. This protocol has been tested with other acids
in [21]. In the second study, we focus on the formation of molecular hydrogen by
proton reduction, catalyzed by a di-iron hydrogenase enzyme. In this case, apart
from obtaining detailed mechanistic understanding and a free-energy profile, the
path can be used to scrutinize the changes in the electronic structure during the
reaction.

In the following, we present the application of multiple-walker PMD to the helix
handedness transition of polyproline chains with increasing length. We rely on
the PMD methodology as introduced in Chapter 2. After defining our simulation
protocol, we report the results and conclusions derived from the case study.

4.2. System
Polyproline chains, Ace–(Pro)𝑛–Nme, form two characteristic helical structures:
polyproline type I (PPI), a right-handed helix with all residues in the cis form
and backbone dihedral angles (𝜙 = −75°, 𝜓 = 160°, 𝜔 = 0°); and polyproline type II
(PPII), a left-handed helix with all residues in the trans form and backbone dihe-
dral angles (𝜙 = −75°, 𝜓 = 146°, 𝜔 = ±180°) [22]. The proline’s cyclized side-chain
considerably restricts the conformational space on the Ramachandran (𝜙, 𝜓) plane,
such that stable and intermediate peptide conformations are mainly determined by
the 𝜔 dihedral angles. Thus, a proline 𝑛-mer can be well described by a set of CVs
{𝜔𝑖} with 𝑖 = 1, ..., 𝑛 − 1. This provides an interesting test system for enhanced
sampling techniques, as the dimensionality of the problem can be tuned by adding
or removing residues. Moreover, the system has biological relevance, as proline
switches are involved in protein signaling [23], and their cis-trans isomerization is
a rate-determining step in several protein folding processes [22]. We demonstrate
the imperviousness of the path-CV to the increase in dimensionality by finding the
average pathways and associated free-energy profiles for the PPI-PPII transition
for: tetrameric, pentameric and hexameric polyproline.

The transition between PPI and PPII has been extensively computationally stud-
ied by Moradi and coworkers [22, 24–29] via various enhanced sampling methods, in-
cluding: adaptively biased MD (ABMD) [30], Hamiltonian and temperature replica
exchange MD (HT-REMD) [31] and steered MD (SMD) [3] from PPII to PPI and
vice versa. As biasing all {𝜔𝑖} dihedrals proves inefficient, more compressed CVs
were built based on summations and other functions of cos(𝜔𝑖), as well as the he-
lix handedness and radius of gyration. ABMD and HT-REMD were used to obtain
free-energy surfaces (FESs) on such CVs. SMD was used to compute the work along
different candidate pathways on the calculated surfaces, from which the transition
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(a) (b)

Figure 4.1: : (a) PPI right-handed helix structure with backbone dihedral angles (𝜙 = −75°, 𝜓 =
160°, 𝜔 = 0°). (b) PPII left-handed helix structure with backbone dihedral angles (𝜙 = −75°, 𝜓 =
146°, 𝜔 = ±180°)

rates could be computed via an extension of Crook’s transient fluctuation theorem.
Simulations were carried out in vacuo, as well as in implicit and explicit water and
other solvents. The preference for either PPI or PPII was observed to depend on
the solvent environment and the chain length. Interestingly, the transition was
found to occur following zipper-like mechanisms. That is, with adjacent residues
rotating in sequential order, each representing one of 𝑛 − 1 free-energy barriers.
Two main pathways were reported: (1) a zipper-like mechanism starting from the
acetylated end when going from PPI to PPII, and from the amidated end when go-
ing from PPII to PPI, with intermediate states of the form Ace–TTT...CCC-Nme;
and (2) a zipper-like mechanism starting from both ends of the chain when going
from PPI to PPII, and from the center of the chain when going from PPII to PPI,
with intermediate states of the form Ace–TTT...CCC...TTT-Nme. Oddly, some of
the SMD results show a different preferred mechanism depending on the direction
of the transition. Recently, the experimental studies of Shi and coworkers [32, 33]
have confirmed the zipper-like mechanism starting from the acetylated end for the
PPI-to-PPII transition. We refer to these previous results for comparison.

4.3. Simulation protocol
4.3.1. Molecular dynamics
In our study, we construct proline oligomers using AmberTools17 [34], which pro-
duces PPII structures. Simulations are carried out using GROMACS 5.1.4 [35]
patched with PLUMED 2.3.0 [19] with the added path-metadynamics code avail-
able on: http://www.acmm.nl/ensing/software/PathCV.cpp. We use the AM-
BER force field ff99SB [36] and no solvent. The time step size is 1 fs and a canonical

http://www.acmm.nl/ensing/software/PathCV.cpp


4.3. Simulation protocol

4

75

sampling through velocity rescaling (CSVR) thermostat [37] is set at 300 K with a
time constant of 0.1 ps.

4.3.2. Path-metadynamics
The path for each proline 𝑛-mer is defined in a CV-space composed of all dihedrals
{𝜔𝑖} with 𝑖 = 1, ..., 𝑛−1. Since our path implementation currently does not support
periodic CVs, we consider only one direction for each residue rotation at a time. For
the clockwise rotation (from 0° to ±180° through positive angle values) we add −90°
to all {𝜔𝑖} and map the transition from PPI {𝜔𝑖} = −90° to PPII {𝜔𝑖} = +90°.
For the counter-clockwise rotation (from 0° to ±180° through negative angle values)
we add +90° to all {𝜔𝑖} and map the transition from PPI {𝜔𝑖} = +90° to PPII
{𝜔𝑖} = −90°. Whenever a particular transition direction is being sampled, the
other one is blocked by harmonic walls with force constants of 1000 kcal/(mol rad2)
which restrain the sampling inside the [−172°, +172°] interval. In this work we only
test transitions in which all residues rotate in the same direction. We primarily focus
on the counter-clockwise rotation, which provided results consistent with previous
literature [22, 24–26, 32, 33].

Paths are described by 20 nodes per dihedral plus 20 trailing nodes at each end,
giving a total of 20(𝑛 + 1) nodes for each proline 𝑛-mer. For all PMD simulations,
the initial guess is a linear interpolation from PPI (path progress parameter 𝑠 = 0)
to PPII (𝑠 = 1). The path update pace is set to 0.5 ps and the half-life parameter
to 2.0 ps. A tube potential is applied with a force constant of 50 kcal/(mol rad2).
Harmonic walls with force constants of 1000 kcal/mol per squared normalized path
unit are set on 𝑠 to limit the sampling inside the [−0.1, +1.1] interval. Accordingly,
the metadynamics force is set to zero outside the same interval. Since the range of 𝑠
is known a priori, it is easy and memory-efficient to use a grid to store the potential.
The PLUMED framework facilitates all these measures.

We start with a single-walker PMD simulation of the proline tetramer. The path
is set for the counter-clockwise transition. Gaussians with a height of 0.05 kcal/mol
and a width of 0.05 normalized path units are deposited every 1.0 ps. The system es-
capes from the starting PPI minimum and follows a step-wise transition to PPII. As
the residues rotate one at a time, the path consists in successive orthogonal segments
in CV-space. Each section captures the crossing over a barrier, and each “corner”
the location of a metastable state. During the simulation, we observe problems
while attempting to converge a path curve. As the system drifts away from each
metastable state, leaving it momentarily unsampled, the reparametrization algo-
rithm makes the nodes tend to a straight line and undoes the previous optimization
(See Fig. 4.2). This “corner-cutting” problem persists until the metadynamics bias
has filled all minima and the system diffuses quickly over every corner, such that
all metastable states are visited frequently enough for the reparametrization not to
undo the path. However, we may expect that this issue will aggravate as we move
to larger systems with more residues, and therefore, more path corners. Multiple-
walker metadynamics [38] presents a solution for this. By having several simulations
updating the same path and the metadynamics bias, we can increase the probability
of all metastable corners being frequently sampled. Additionally, the convergence
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Figure 4.2: An evolving PPI-PPII path for a proline tetramer in 𝜔1𝜔2𝜔3-space. As the single-
walker sampling (black) drifts away from the (𝜔1 = −90°, 𝜔2 = −90°, 𝜔3 = +90°) metastable state
corner, the node reparametrization makes the path tend to a straight line (red) and undoes the
previous optimization (green).

time is expected to be reduced.

4.3.3. Multiple-walker path-metadynamics
We setup the multiple-walker PMD simulations as follows. For each proline 𝑛-mer,
we initialize 2(𝑛 + 1) walkers—two per expected valley in the FES—half of them
starting from PPI and half from PPII, with random Maxwell-Boltzmann distributed
velocities. Since AmberTools17 [34] generates only PPII helices, the initial PPI
configurations are obtained via SMD simulations (See Section 4.A). We focus on
the counter-clockwise transition for all chain lengths.

For the tetramer, we deposit Gaussians with a height of 0.02 kcal/mol and a
width of 0.05 normalized path units every 0.5 ps. For the pentamer, the Gaussian
height is reduced to 0.01 kcal/mol, and for the hexamer, to 0.025 kcal/mol. The
adjustment in Gaussian amplitude is for two reasons. First, to compensate the
increase in total bias after adding more walkers. Second, to favor convergence to the
minimum energy channel in longer peptides, which present greater path degeneracy.
Of course, runs with smaller Gaussians need a longer time to sample the path and
compute the free energy along it.

Data and example PLUMED input files required to reproduce the results re-
ported in this chapter are available on PLUMED-NEST (www.plumed-nest.org),
the public repository of the PLUMED consortium [39], as plumID:19.033.

www.plumed-nest.org
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4.4. Results and discussion
Our PMD results for the proline tetramer are in very good agreement with previous
work [22, 24–26, 32, 33]. We observe a PPI-to-PPII zipper-like transition starting
from the acetylated end following the order 𝜔1 → 𝜔2 → 𝜔3 (See Fig. 4.3). This
is equivalent to the PPI-to-PPII path with least average work in [24]. The free-
energy profile shows barriers of around 10 kcal/mol for each rotated dihedral and a
free-energy difference of 7 kcal/mol between the two stable helical states. The same
results were obtained with Gaussian heights of 0.01 and 0.005 kcal/mol. Thus, the
zipper-like mechanism starting from the N-terminus appears to be the MFEP for
the counter-clockwise rotation.

In [24], Moradi and coworkers report different least-work mechanisms for the
PPI-to-PPII and the PPII-to-PPI transition. No evidence of this was observed in our
PMD simulations. We hypothesize that the cosine-based CVs inability to capture the
direction of dihedral rotation might hamper the calculation of a reversible transition
[24]. As a check, we performed a PMD run for the clockwise transition with a
Gaussian height of 0.1 kcal/mol. This resulted in a center-to-ends PPI-to-PPII
transition, ordered 𝜔2 → 𝜔3 → 𝜔1 (See Section 4.A, Fig. 4.A.1), which is consistent
with the least-work path reported in Ref. [24] for the PPII-to-PPI transition. This
provides an explanation for the contradiction in reversibility for the reported result,
and points to a relation between the order and the direction in which the residues
rotate.

For the proline pentamer, we again obtain a zipper-like PPI-to-PPII transition
starting from the acetylated end, following 𝜔1 → 𝜔2 → 𝜔3 → 𝜔4 (See Fig. 4.4). This
mechanism does not correspond to the optimal one reported in previous studies [24]
(ends-to-center), but it is included within the feasible pathways. The free-energy
profile also shows the expected barrier heights. When attempting to replicate the
result with smaller or less frequent Gaussians, we observed different zipper mecha-
nisms (starting from each end, both ends and the center). Given the path degeneracy
for this case, it is not possible to confirm that the algorithm has converged to the
(global) MFEP after just one simulation. One could obtain more statistics either by
optimizing the path several times using different parameters and initial velocities, or
by explicitly calculating the free energy along each of the possible (𝑛−1)! transition
paths.

The result is similar for the hexamer. We observe a PPI-to-PPII transition
following the order 𝜔1 → 𝜔2 → 𝜔3 → 𝜔4 → 𝜔5 starting from the acetylated end
(See Fig. 4.5). The free-energy difference and the free-energy barriers are similar to
the ones in previous studies [22, 24]. Again, when modifying the Gaussian deposition
parameters, we observe all different zipper-like mechanisms. The path degeneracy
prevents us from finding the optimal path in a single simulation. However, the
presented adaptive path framework can be used to extract enough statistics for
this, or even longer peptides.

In order to evaluate the path-CV’s handling of the increasing {𝜔𝑖}-space dimen-
sionality, we analyze the convergence of the PPI-to-PPII path and the free-energy
profile for the different oligomers. To have comparable results, we run the tetramer
and the pentamer with the same multiple-walker PMD protocol used for the hex-
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Figure 4.3: (a) Adapted PPI-PPII path for a proline tetramer in 𝜔1𝜔2𝜔3-space after 𝑡 = 30 ns
(black) and sampling density for each of the eight walkers during the last 1 ns (colored dots). (b)
Time evolution of the path progress parameter 𝑠 for each walker (in colors). (c) Average free-energy
profile from 𝑡 = 5 ns to 𝑡 = 30 ns.
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Figure 4.4: (a) Adapted PPI-PPII path representation for a proline pentamer in 𝜔1𝜔2𝜔3𝜔4-space
after 𝑡 = 50 ns. (b) Time evolution of the path progress parameter 𝑠 for each of the ten walkers
(in colors). (c) Average free-energy profile from 𝑡 = 5 ns to 𝑡 = 50 ns.
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Figure 4.5: (a) Adapted PPI-PPII path representation for a proline hexamer in 𝜔1𝜔2𝜔3𝜔4𝜔5-
space after 𝑡 = 70 ns. (b) Time evolution of the path progress parameter 𝑠 for each of the twelve
walkers (in colors). (c) Average free-energy profile from 𝑡 = 5 ns to 𝑡 = 70 ns.
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amer (12 walkers, with 0.025 kcal/mol Gaussian height). The tetramer run pro-
duces the same Ace-to-Nme zipper-like mechanism, while the pentamer produces
a 𝜔1 → 𝜔3 → 𝜔4 → 𝜔2 mechanism. We assume that the rate of convergence is
independent of the captured pathway. In Fig. 4.6 we depict the root-mean-square
deviation (RMSD) time evolution of the paths with respect to the initial guess (i.e.
the linear interpolation), and of the running average free-energy profiles with re-
spect to a flat profile at 0 kcal/mol. We stop the runs as soon as the RMSD of the
running average free-energy profile does not fluctuate more than 0.1 kcal/mol per
ns for a duration of 10 ns. We observe that the convergence time does not increase
exponentially—not even linearly—with the dimension of CV-space. We argue that
convergence is reached in two stages. In the first stage, the adaptive path searches
for a transition channel, while at the same time the minima in the free-energy profile
are filled. This process is mediated by the flexibility of the path, the strength of
the bias, the features of the FES and the dynamics of the system. In the second
stage, when the metadynamics walker(s) has (have) visited the full length of the
path, the average transition path and the free energy are further converged while
sampling the orthogonal degrees of freedom. The complexity for this task depends
on the Gaussian size and deposition frequency, as well as on the features of the
one-dimensional free energy and the diffusivity of the system along the path. We
reason that the same performance persists for higher-dimensional systems, and for
non-step-wise transitions.

The tunable polyproline system has allowed us to run a comprehensive exercise
on path-metadynamics. The capabilities of the path-CV to handle increasing dimen-
sionality were analyzed and a two-stage convergence is proposed. Additionally, we
demonstrated how explicitly considering multiple CVs can impact the specificity of
the sampled configurations, which is a key aspect to tackle more complex systems.
Multiple-walker simulations were presented not only as an accelerating tool, but
also as a relevant complement to sample step-wise transitions while reparametriz-
ing the path. We also observed the challenges associated with path degeneracy,
as computing each of the (𝑛 − 1)! transition channels is a quickly-growing task for
longer chains. An interesting approach to study such multiple-pathway transitions
is to sample in the direction perpendicular to the path to find alternative transition
channels [12], or to use multiple paths as done in Chapter 5.

4.5. Conclusions
At the hand of a case study of a complex activated molecular transition, we have
shown that an adaptive path-CV, i.e. a flexible parametrized curve that is a function
of a set of descriptive collective variables, is a powerful means to describe the tran-
sition and to enhance the sampling of the process. Combined with metadynamics
and given an appropriate set of CVs, the path-CV transforms on-the-fly to the mean
transition flux density and is simultaneously used as a reaction coordinate, along
which the dynamics are biased and the free-energy profile of the process is obtained.

By applying the bias onto the path-CV, instead of directly on each of the de-
scriptive CVs in the set, the restriction on the number of CVs, which is about three
in “normal” metadynamics, is essentially removed. The case study, in which we
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Figure 4.6: (a) RMSD time evolution of the PPI-to-PPII paths with respect to the initial straight
paths. (b) RMSD time evolution of the running average free-energy profiles with respect to a
flat profile at 0 kcal/mol. (c) Time evolution of the change in the RMSD of the running average
free-energy profiles per ns.
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applied PMD to model the conformational switch from a right-handed helix to a
left-handed helix in polyproline oligomers, showed that the computational cost to
converge the transition path and the free-energy profile grows less than linearly
with the number of dihedral angles in the set of CVs. The observed increase in the
required simulation time was mainly due to the increasing number of intermediate
meta-stable states and barriers that need to be “filled” with metadynamics Gaus-
sians in the first part of the PMD simulation. But once the path-CV has found the
reaction mechanism and the full length of the path has been sampled, the second
part of the convergence is even less dependent on the dimensionality of the CV
set. The cost-efficiency of PMD can be particularly beneficial in MD simulations
where the calculation of each time step is highly expensive, i.e. when using DFT to
calculate forces. For example, PMD has been successfully applied to chemical tran-
sitions such as the deprotonation of acetic acid in explicit water, or the production
of molecular hydrogen from protons in the hydrogenase enzyme [20].

The polyproline study also showcased the multiple-walker implementation of
PMD, in which parallel replicas of the simulation simultaneously sample and update
the path-CV, as well as construct the metadynamics bias potential. The multiple-
walker parallelization has a trivial scaling with the number of walkers, perhaps only
limited by the communication of the transition flux density information, which in
the current implementation in the PLUMED software is handled through reading
and writing the data files of each replica, but in a later version can potentially
use OpenMP/MPI communication. Apart from the computational speed-up, the
multiple-walker PMD has the advantage that the “corner-cutting” problem due to
the reparametrization step in the path updates is largely avoided.

Finally, the polyproline study also raises the challenge of path degeneracy, i.e.
having several feasible mechanisms with similar free-energy barriers connecting two
states. The original PMD algorithm is designed to converge a single average tran-
sition path or MFEP. In landscapes with multiple transition channels, PMD is
bounded to the closest low free-energy path to the initial guess. If the landscape is
very diffusive, convergence can be elusive if the transition constantly switches from
one path to another. In Chapter 5, we propose an extension of PMD to handle
multiple transition pathways.

4.A. Appendix
4.A.1. Path-steered molecular dynamics
Steered MD (SMD) was used to obtain PPI structures parting from the default PPII
produced by AmberTools17 [34]. We set straight paths from −1 to +1 in the space
of {cos(𝜔𝑖)} with 𝑖 = 1, ..., 𝑛 − 1 for each proline 𝑛-mer. The path update pace is
set to 0.1 ps and the half-life to 0.025 ps. In all cases, the SMD spring constant is
of 1000 kcal/mol per squared normalized path unit. We only use a tube potential
for the hexamer, with a force constant of 30 kcal/mol. We start the simulation with
a 10 ns equilibration, drive the transition in 50 ns, and finish with another 10 ns
equilibration and a visual inspection of the structure. It is possible to repeat this
process recursively—using optimized paths as initial guesses—to converge a path
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and a free-energy profile [3].

4.A.2. PPI-to-PPII clockwise transition for the proline tetramer
PMD was applied to the PPI-to-PPII transition via clockwise rotations of the proline
tetramer. The metadynamics and path-CV parameters where set as explained in
Section 4.4. The resulting path, ordered 𝜔2 → 𝜔3 → 𝜔1, corresponds to a center-to-
ends PPI-to-PPII transition (Fig. 4.A.1). Comparing this to the counter-clockwise
Ace-to-Nme PPI-to-PPII transition, points to a relation between the direction and
the order in which the residues rotate.

4.A.3. Selecting the number of path nodes
We have no a priori rule to find the required number of nodes for a given transition.
However, we can identify specific signs of either lack or excess of nodes during simu-
lations. We run multiple-walker simulations for the tetramer transition as described
in Section 4.4, and only change the number of path nodes. Results are shown in
Fig. 4.A.2. Too many nodes cause the path to “curl” near the stable states, as seen
in the 40 nodes per dihedral path, at the (𝜔1 = +90°, 𝜔2 = +90°, 𝜔3 = +90°) corner.
This occurs as numerous nodes start to capture small fluctuations around the FES
basins. Too few nodes generate an effect as seen in the minimal nodes path—that
is, 1 node per metastable state—at the (𝜔1 = −90°, 𝜔2 = −90°, 𝜔3 = +90°) corner.
As only one node locates the metastable state, any sampling fluctuation from it will
cause the path to drift away. It should also be noted that changing the number of
nodes leads a different pathways. This is a consequence of the changes in path flexi-
bility. Still, the algorithm has a degree of robustness, as the path with 10 nodes per
dihedral produces the same result as the original path with 20 nodes per dihedral.
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Figure 4.A.1: (a) Adapted PPI-PPII (clockwise) path for a proline tetramer in 𝜔1𝜔2𝜔3-space after
𝑡 = 30 ns (black) and sampling density for each of the eight walkers during the last 1 ns (colored
dots). (b) Time evolution of the path progress parameter 𝑠 for each walker (in colors). (c) Average
free-energy profile from 𝑡 = 5 ns to 𝑡 = 30 ns.
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Figure 4.A.2: Adapted PPI-PPII paths for a proline tetramer in 𝜔1𝜔2𝜔3-space with varying
number of nodes.
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