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Abstract
The solution of nonlinear inverse problems is a challenging task in numerical analysis. Inmost
cases, this kind of problems is solved by iterative procedures that, at each iteration, linearize
the problem in a neighborhood of the currently available approximation of the solution.
The linearized problem is then solved by a direct or iterative method. Among this class of
solution methods, the Gauss–Newton method is one of the most popular ones. We propose
an efficient implementation of this method for large-scale problems. Our implementation is
based on projecting the nonlinear problem into a sequence of nested subspaces, referred to
as Generalized Krylov Subspaces, whose dimension increases with the number of iterations,
except for when restarts are carried out. When the computation of the Jacobian matrix is
expensive, we combine our iterative method with secant (Broyden) updates to further reduce
the computational cost. We show convergence of the proposed solution methods and provide
a few numerical examples that illustrate their performance.
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1 Introduction

This paper is concerned with the solution of nonlinear least-squares problems of the form

min
x∈Rn

‖y − f (x)‖2 , (1.1)

where f : Rn → R
m is a differentiable nonlinear function, x ∈ R

n denotes the unknown
vector that we would like to determine, y ∈ R

m represents measured data, and ‖·‖ stands
for the Euclidean vector norm. This kind of problems arises in several fields of science
and engineering, such as in image reconstruction and geophysics. In some applications, the
solution of the problem (1.1) is very sensitive to perturbations, e.g., to errors in the data vector
y; these errors may, for instance, be caused by measurement inaccuracies. In this paper, we
only consider problems that are not overly sensitive to perturbations; if the given problem is
very sensitive to perturbations in y, then we assume that the problem has been regularized
to make the solution less sensitive. For an example of well-posed problem of the form (1.1)
we refer the reader to the so-called Bratu problem; see, e.g., [29] and Sect. 4. If the problem
is ill-posed, a simple approach to regularize it is to use Tikhonov regularization (see, e.g.,
[21]), i.e., to substitute (1.1) with

min
x∈Rn

{‖y − f (x)‖2 + μ ‖x‖2} ,

for a suitable μ > 0. In the following, we will assume that this substitution, if required, has
been performed.

We consider the Gauss–Newton method [20, 34] for the solution of (1.1). This is an
iterative method that at each step solves a linear least-squares problem obtained from a
first-order Taylor expansion of the nonlinear function r(x) = y − f (x). Convergence is
assured thanks to the use of the Armijo-Goldstein condition; see below. In case the problem
(1.1) is underdetermined, i.e., when n is larger than m, the solution is not unique. Pes and
Rodriguez [32, 33] describe a modification of the Gauss–Newton method that can be applied
in this situation to determine the minimal-norm solution; also some regularized variants of
the Gauss–Newton method are described.

Nevertheless, we would like to briefly discuss the situation when the Jacobian matrix is
severely ill-conditioned or even rank-deficient. Since we project a linearization of the (large)
problem (1.1) into solution subspaces of fairly small dimensions, the projected problems
usually are better conditioned than the original large problem. As it will be illustrated by
numerical examples in Sect. 4, we are able to quite accurately solve ill-conditioned problems,
when the data y are not corrupted by noise, by employing as the only type of regularization
the projection into a small linear subspace. This assumption corresponds to committing an
inverse crime. Nevertheless, we illustrate that our solution method is less sensitive to ill-
conditioning than the standard Gauss–Newton method, and that, when the problem (1.1)
is severely ill-conditioned, the standard Gauss–Newton method may fail to determine an
accurate solution even under the scenario of an inverse crime.

Themain computational effort of the Gauss–Newtonmethod is the solution of linear least-
squares problems of possibly large dimensions at each iteration. We would like to address
this issue by using Generalized Krylov Subspaces (GKS). The subspaces we consider were
first applied by Lampe et al. [30] to the solution of large linear discrete ill-posed problems
by Tikhonov regularization. Subsequently they were used for the solution of nonconvex
minimization problems in imaging and statistics; see, e.g., [9, 10, 27, 31]. The approximate
solution x(k) ∈ R

n computed at iteration k lives in a generalized Krylov subspace Vk−1, and a
projected residual error is included in the next generalized Krylov subspace Vk . The solution
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subspaces generated in this manner are nested and typically contain accurate approximations
of the desired solution of (1.1) already when they are of fairly small dimension; in partic-
ular, the use of generalized Krylov subspaces performs better than using standard Krylov
subspaces; see [7, 31] for illustrations.

Another possible bottleneck of the Gauss–Newton method for large-scale problems is
the computation of the Jacobian matrix at each iteration. If this is very time-consuming,
then instead of forming the Jacobian by evaluating all of its entries at each iteration, we
approximate the Jacobian by using a secant (Broyden) update; see [6, 20]. When the iterates
x(k) and x(k+1) are close, the secant update allows us to approximate the Jacobian of f
at x(k+1) by the Jacobian (or an approximation thereof) at x(k) plus a low-rank correction.
Therefore, we update the Jacobian for k̃ iterations, and compute the Jacobian “from scratch”
only when k ≡ 0 mod k̃.

Finally, we observe that, if many iterations of the algorithms are performed, the dimension
of the space Vk may increase significantly and this, in turn, can slow down the computations.
To avoid this situation, we propose a restarted variant based on the algorithms proposed in
[11]. Every krest iterations the space Vk is restarted, i.e., it is replaced by a one-dimensional
space; see below. This strategy ensures that the dimension of the space Vk is bounded regard-
less of the number of iterations. We will illustrate that this reduces the computing time.

It is the purpose of this paper to show that projection into generalized Krylov subspaces
may be beneficial when solving large nonlinear least-squares problems (1.1). This approach
is compared to a standard implementation of the Gauss–Newton method. We remark that
many approaches to Newton-Krylov methods have been discussed in the literature; among
the first papers on this topic are those written by Brown and Saad [4, 5], who consider the
application of Arnoldi methods, which requires m = n. Darvishi and Shin [13] and Kan et al.
[28] provide more recent contributions. However, these methods do not focus on nonlinear
least-squares problems and,moreover, consider the application of standardKrylov subspaces.

This paper is organized as follows. Section2 briefly recalls the classical Gauss–Newton
method. Our new solution approaches are described in Sect. 3 and there we also show some
of properties of these methods. Section4 presents a few numerical examples that illustrate
the performance of our methods, and concluding remarks can be found in Sect. 5.

2 The Gauss–NewtonMethod

This section reviews the classical Gauss–Newton method applied to the solution of nonlinear
least-squares problems (1.1). Let r(x) = y − f (x) be the residual function, where x ∈ R

n

represents an approximate solution of the problem (1.1), the function f : R
n → R

m is
nonlinear and Fréchet differentiable, and the vector y ∈ R

m represents available data. We
disregard for the moment that in some applications, the problem (1.1) might be severely
ill-conditioned. The Gauss–Newton method computes the solution x∗ of (1.1) by minimizing
the Euclidean norm of the residual r(x), i.e., it solves

x∗ = arg min
x∈Rn

‖r(x)‖2 , (2.1)

where for simplicity, let us assume that the solution x∗ is unique. The Gauss–Newton method
is an iterative procedure that, at each iteration, linearizes the problem (1.1) and minimizes the
norm of the residual of the linearized problem. Since we assumed that f is Fréchet differen-
tiable, it follows that r(x) satisfies this property as well. Therefore, we use the approximation
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r
(
x(k+1)

)
� r

(
x(k)
)

+ J (k)q(k),

where x(k) is the current approximation of x∗. The vector q(k) is referred to as the step, and
J (k) = J (x(k)) ∈ R

m×n represents the Jacobian matrix of r(x) = [r1(x), . . . , rm(x)]T at
x = x(k). It is defined by

[J (x)]i j = ∂ri (x)
∂x j

, i = 1, . . . , m, j = 1, . . . , n.

Let x(0) ∈ R
n be an initial approximation of the solution x∗ of the nonlinear least-squares

problem (2.1). We determine, for k = 0, 1, 2, . . . , the step q(k) by solving the linear least-
squares problem

min
q∈Rn

∥∥∥r
(
x(k)
)

+ J (k)q
∥∥∥
2
,

and we compute the next approximation x(k+1) of x∗ as

x(k+1) = x(k) + α(k)q(k), k = 0, 1, 2, . . . ,

where the coefficient α(k) is determined according to the Armijo-Goldstein principle, see
below, to ensure convergence to a stationary point of

J (x) = ‖r(x)‖2 ;
see, e.g., [20, 25] for discussions. Since the functional J might not be convex, it is in general
not possible to show that the iterates x(k) converge to a minimizer of J . We remark that if
one knows that the solution x∗ is nonnegative, then it is possible to determine α(k) such that
x(k) ≥ 0 for all k.Wewill not dwell on this situation here, but we note that it is straightforward
to extend our solution method to compute nonnegative solutions.

We say that α(k) satisfies the Armijo-Goldstein condition if
∥∥∥r
(
x(k)
)∥∥∥

2 −
∥∥∥r
(
x(k) + α(k)q(k)

)∥∥∥
2 ≥ 1

2
α(k)

∥∥∥J (k)q(k)
∥∥∥
2
. (2.2)

To determine a suitable α(k), we apply a line search. Let α
(k)
0 > 0 be large enough. If α

(k)
0

satisfies the condition (2.2), then we set α(k) = α
(k)
0 , otherwise we let

α
(k)
1 = α

(k)
0

2
.

We iterate in this manner until we find an α
(k)
j that satisfies the condition (2.2) and then

set α(k) = α
(k)
j . The Gauss–Newton method with line search based on the Armijo-Goldstein

condition yields a converging sequence of iterates x(k), k = 0, 1, 2, . . . , for any differentiable
function f ; see [25] for a proof. Algorithm 1 summarizes the computations.

Theorem 1 Let f : Rn → R
m be a Fréchet differentiable function and let x(k), k = 1, 2, . . . ,

denote the iterates generated by Algorithm 1. There exists x∗ such that

lim
k→∞

∥∥∥x(k) − x∗
∥∥∥ = 0,

and x∗ is a stationary point of J (x) = ‖y − f (x)‖2. If J is convex, then x∗ is a global
minimizer of J . Moreover, if J is strictly convex, then there is a unique global minimizer
that coincides with x∗.

Proof Proofs can be found in [3, 25]. 
�
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Algorithm 1: The classical Gauss–Newton method

input : Nonlinear function f , data y, initial guess for the approximate solution x(0), initial guess for
the damping parameter α0, tolerance τ , maximum number of iterations K .

output: Approximate solution x∗.
1 Define the function r(x) = y − f (x);
2 for k = 0, 1, 2, . . . , K do
3 Compute the Jacobian J (k) of f in x(k);

4 q(k) = arg min
q∈Rn

∥∥∥r
(
x(k)

)
+ J (k)q

∥∥∥
2
;

5 α
(k)
0 = α0;

6 j = 0;

7 while
∥∥∥r
(
x(k)

)∥∥∥
2 −

∥∥∥r
(
x(k) + α

(k)
j q(k)

)∥∥∥
2 ≤ 1

2α
(k)
j

∥∥∥J (k)q(k)
∥∥∥
2
do

8 α
(k)
j+1 = α

(k)
j
2 ;

9 j = j + 1;

10 α(k) = α
(k)
j ;

11 x(k+1) = x(k) + α(k)q(k);

12 if
∥∥∥x(k) − x(k+1)

∥∥∥ ≤ τ

∥∥∥x(k)
∥∥∥ then

13 exit;

14 x∗ = x(k+1);

3 The Gauss–NewtonMethod in Generalized Krylov Subspaces

We would like to reduce the computational cost of the iterations with Algorithm 1 when
applied to the solution of large-scale problems (1.1).We achieve this by determining approxi-
mate solutions of the problem (2.1) in a sequence of fairly low-dimensional solution subspaces
Vk , k = 1, 2, . . . , whose dimensions increase with k. At iteration k, we first compute the
approximation x(k+1) ∈ Vk of the solution x∗ of (2.1), and then expand the solution subspace
by including an appropriately chosen vector in Vk . This defines the next solution subspace
Vk+1. Since dk = dim(Vk)  n, the computation of x(k+1) is less expensive than computing
a new iterate with the standard Gauss–Newton method, which seeks to determine a solution
in R

n .
Assume that at the k-th step an approximation x(k) ∈ Vk−1 ⊂ Vk of the solution x∗ is

known. Let the columns of thematrix Vk ∈ R
n×dk form an orthonormal basis for the subspace

Vk . Then

V T
k Vk = Idk and x(k) = Vkz(k),

where Idk denotes the identity matrix of order dk , z(k) ∈ R
dk , and the last entry of z(k)

vanishes since z(k) ∈ Vk−1.
The residual at the k-th step is given by

r
(

Vkz(k)
)

= y − f
(
x(k)
)

= y − f
(

Vkz(k)
)

. (3.1)

We determine a new approximate solution x(k+1) ∈ Vk as

x(k+1) = Vkz(k+1),
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where the vector z(k+1) is computed by applying the Gauss–Newton method to (3.1), i.e.,

z(k+1) = z(k) + α(k)q(k), (3.2)

and the step q(k) is obtained by solving the least-squares problem

min
q∈Rdk

∥∥∥r
(

Vkz(k)
)

+ J (k)q
∥∥∥
2
.

With slight abuse of notation, we denote the step by q, similarly as in the previous section,
even though the vectors q are of different dimensions; in this section, the dimension depends
on k. The matrix J (k) ∈ R

m×dk represents the Jacobian of r in (3.1) evaluated at the point
z(k). We have

J (k) = −J f

(
Vkz(k)

)
Vk,

where J f denotes the Jacobian matrix of the nonlinear function f . To ensure convergence,
the parameter α(k) in (3.2) is determined by applying the Armijo-Goldstein principle, i.e.,
α(k) is the largest member of the sequence α(0)2−i , i = 0, 1, . . . , for which

∥∥∥r
(

Vkz(k)
)∥∥∥

2 −
∥∥∥r
(

Vk

(
z(k) + α(k)q(k)

))∥∥∥
2 ≥ 1

2
α(k)

∥∥∥J (k)q(k)
∥∥∥
2
.

In our numerical experiments we set α(0) = 1.
Once the new iterate x(k+1) has been evaluated, we enlarge the solution subspace Vk by

determining a vector v(k+1) that is orthogonal to Vk . To this end, let us first compute the
Jacobian J f

(
x(k+1)

)
of f at x(k+1). This computation also is required for determining x(k+2)

and, therefore, is carried out only once. Let

g(k+1) = J f

(
x(k+1)

)T (
y − f

(
x(k)
))

.

The intuition is thatg(k+1) is the residual of the normal equations associatedwith the linearized
problem. However, in general, this vector is not orthogonal to the subspace Vk . We therefore
explicitly orthogonalize it to this subspace, i.e., we compute

g̃(k+1) = g(k+1) − Vk V T
k g(k+1),

and then normalize the vector so obtained,

v(k+1) = g̃(k+1)
∥∥g̃(k+1)

∥∥ .

We store an orthonormal basis for Vk+1 as columns of the matrix Vk+1 = [
Vk, v(k+1)

] ∈
R

n×(dk+1).
Although it is an extremely rare event when solving problems that arise from a real

application, it is possible that g̃(k+1) = 0, i.e., that g(k+1) ∈ Vk . In this case, we simply
do not enlarge the solution subspace in this iteration and proceed with the computations.
Differently from Krylov methods for the solution of linear systems of equations, such as
GMRES, this is not a case of a “lucky breakdown” and one generally cannot terminate the
iterations.

The last point to address is how to determine V0, i.e., the basis for the initial subspace. In
our computed examples, we will choose an initial approximate solution x(0) �= 0 and set

V0 = x(0)
∥∥x(0)

∥∥ .
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The computations are summarized by Algorithm 2.

Algorithm 2: A Gauss–Newton method using generalized Krylov subspaces

input : Nonlinear function f , data vector y, initial guess for the approximate solution x(0), initial
guess for the damping parameter α0, tolerance τ , maximum number of iterations K .

output: Approximation x̃∗ of the solution x∗.
1 V0 = x(0)/

∥∥∥x(0)
∥∥∥;

2 z(0) =
∥∥∥x(0)

∥∥∥;

3 Compute the Jacobian J f of f at x(0);
4 for k = 0, 1, 2, . . . , K do
5 J (k) = −J f Vk ;

6 r(k) = y − f
(

Vkz(k)
)
;

7 q(k) = arg min
q∈Rdk

∥∥∥r(k) + J (k)q
∥∥∥
2
;

8 α
(k)
0 = α0;

9 j = 0;

10 while
∥∥∥r
(

Vkz(k)
)∥∥∥

2 −
∥∥∥r
(

Vk

(
z(k) + α

(k)
j q(k)

))∥∥∥
2 ≤ 1

2α
(k)
j

∥∥∥J (k)q(k)
∥∥∥
2
do

11 α
(k)
j+1 = α

(k)
j
2 ;

12 j = j + 1;

13 α(k) = α
(k)
j ;

14 z(k+1) = z(k) + α(k)q(k);

15 if
∥∥∥z(k) − z(k+1)

∥∥∥ ≤ τ

∥∥∥z(k)
∥∥∥ then

16 exit;

17 Compute the Jacobian J f of f at Vkz(k+1);

18 g(k+1) = J T
f r

(k);

19 g̃(k+1) = g(k+1) − Vk V T
k g(k+1);

20 Vk+1 =
[
Vk , g̃(k+1)/

∥∥∥g̃(k+1)
∥∥∥
]
;

21 z(k+1) = [z(k+1) 0
]T

;

22 x̃∗ = Vkz(k+1);

We are now in position to show some theoretical results.

Lemma 1 Let f be a Fréchet differentiable function. With the notation of Algorithm 2, it
holds that for every k, there is a finite positive integer j such that

∥∥∥r
(

Vkz(k)
)∥∥∥

2 −
∥∥∥r
(

Vk

(
z(k) + α

(k)
j q(k)

))∥∥∥
2 ≥ 1

2
α

(k)
j

∥∥∥J (k)q(k)
∥∥∥
2
.

Proof This result follows from [25, Proposition 4.1]. 
�

Theorem 2 Let f be Fréchet differentiable and let z(k), k = 1, 2, . . . , denote the iterates
generated by Algorithm 2. Define

x(k) = Vkz(k).
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Then there is a vector x∗ such that

lim
k→∞

∥∥∥x(k) − x∗
∥∥∥ = 0,

and x∗ is a stationary point of J (x) = ‖y − f (x)‖2. If J is convex, then x∗ is a global
minimizer of J . Moreover, if J is strictly convex, then x∗ is the unique global minimizer.

Proof We first discuss the case when there is an index k0 such that g(k) ∈ Vk0 for all k > k0
and dim

(Vk0

)
< n. Then, after iteration k0, all subsequent iterates belong to Vk0 . However,

since the Armijo-Goldstein principle is satisfied, this means that Algorithm 2 reduces to
Algorithm 1 after k0 iterations and, therefore, the iterates converge to a stationary point of J
by Theorem 1.

On the other hand, if there is no index k0 such that g(k) ∈ Vk0 for all k > k0 and
dim

(Vk0

)
< n, then there is an index k1 such that dim

(Vk1

) = n and, therefore, Vk = R
n

for all k > k1. Convergence to a stationary point now follows from Theorem 1. 
�
Remark 1 The proof of Theorem 2 would appear to suggest that one may need n iterations
withAlgorithm2 to obtain an accurate approximation of the limit point.However, in problems
that stem from real applications, typically only a few iterations are required to satisfy the
stopping criterion. This is illustrated by numerical experiments in Sect. 4.

3.1 Secant Acceleration

In some applications the evaluation of the Jacobian J f of f may be computationally expen-
sive. We therefore discuss the updating strategy proposed by Broyden [6] that makes it
possible to avoid the computation of J f from scratch every iteration. A nice discussion
of this updating strategy is provided by Dennis and Schnabel [20, Chapter8]. Broyden [6]
proposed the following secant update of the Jacobian matrix

J f

(
Vk+1z(k+1)

)
≈ J f

(
Vkz(k)

)
+ H (k), (3.3)

where H (k) generally is a rank-two matrix defined by

H (k) = �r(k) − J f
(
Vkz(k)

)

∥∥�x(k)
∥∥2

(
�x(k)

)T
, (3.4)

with�x(k) = x(k+1)−x(k) and�r(k) = r(k+1)−r(k).We then can compute an approximation
of J f (Vk+1z(k+1))Vk+1 as follows

J f (Vk+1z(k+1))Vk+1 =
[

J f (Vk+1z(k+1))Vk, J f (Vk+1z(k+1))v(k+1)
]

≈
[

J f (Vkz(k))Vk + H (k)Vk, J f (Vkz(k))v(k+1) + H (k)v(k+1)
]
.

These updating formulas can be applied repeatedly, for k = 0, 1, . . . , with a suitable choice
of H (0). Then H (k) is a low-rank matrix when k is fairly small; see [20]. The matrix H (k)

typically is not explicitly formed; instead the vectors that make up H (k) are stored and
used when evaluating matrix–vector products with H (k). When the number of updating
steps increases, the quality of the approximation of J f by H (k) at desired points x may
deteriorate, but not by very much. Dennis and Schnabel [20, p. 176] refer to this behavior as
“bounded deterioration”; see [20, Lemma 8.2.1] for bounds on the deterioration. When the
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approximation H (0) of the Jacobian at the initial point xinit is sufficiently close to the Jacobian
at the desired solution, J f (x∗), the bounded deterioration of the quality of the approximations
of H (k) ismild enough to secure convergence to the solution x∗ as k increaseswhen repeatedly
using the updating formula; see [20, Theorem8.2.2] for details. Nevertheless, since it is
difficult to assess whether the conditions of this theorem are satisfied, we recompute the
Jacobian from scratch every k̃ iterations. Algorithm 3 summarizes the computations.

3.2 Restarting Strategy

The main computational cost of the outlined solution method, if we ignore the computation
of the Jacobian of f , is the solution of a linear system of equations of fairly small size at
every iteration. However, if many iterations are carried out, the systems may become large
and require a non-negligible computational effort to solve. To avoid this issue, we employ the
restart strategy proposed in [11] for the Maximization–Minimization algorithm. Specifically,
the solution method described in [11] restarts the generalized Krylov subspace when a fixed
user-specified number of iterations have been carried out.We denote this number by krest > 1
as the number of iterations after which we restart the GKS. Since we set V0 ∈ R

n×1, we
have that, if no restarting is used, dim(Vk) = k + 1. To avoid that the dimension of Vk and,
therefore, the size of J (k), become too large, we set, if k ≡ 0mod krest ,

Vk = x(k)

∥∥x(k)
∥∥ .

This ensures that the number of columns of Vk never exceeds krest and that the computational
effort per iteration does not increase too much with k. For large-scale problems, this also has
the added benefit of reducing the memory requirement of the method. This may be important
if only a small amount of fast memory is available or if the size of the problem to be solved
is very large; see [11] for a discussion.

Since when using restarts the spaces Vk are not nested, the proof of Theorem 2 does not
hold. We only can state that, thanks to the Armijo-Goldstein rule, it holds

∥∥∥r(k+1)
∥∥∥ ≤

∥∥∥r(k)
∥∥∥ , ∀k > 0.

Algorithm 4 summarizes the computations.

4 Numerical Examples

In this section, we apply the algorithms described in the previous sections to three nonlinear
least-squares problems: a real-world problem from applied geophysics, a partial differential
equation that appears in a number of applications such as in fuel ignition models of thermal
combustion theory, and a simple problem for which the Jacobian is a very sparse matrix.
For each problem we compare the algorithms in terms of accuracy of the computed solution,
number of iterations required to satisfy the stopping criterion, and CPU time. We measure
the accuracy by means of the Relative Reconstruction Error (RRE)

RRE(x) = ‖x − xtrue‖
‖xtrue‖ ,

where xtrue denotes the desired solution of the problem. For each algorithm we set the
maximum number of iterations to K = 100 and the tolerance for the stopping criterion
to τ = 10−5. In Algorithm 3 we set k̃ = 10, i.e., we compute the Jacobian from scratch
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Algorithm 3: Gauss–Newton in GKS with secant update

input : Nonlinear function f , data y, initial guess for the approximate solution x(0), initial guess for
the damping parameter α0, tolerance τ , k̃ number of iterations for which the Jacobian is
updated, maximum number of iterations K .

output: Approximate solution x̃∗.
1 V0 = x(0)/

∥∥∥x(0)
∥∥∥;

2 z(0) =
∥∥∥x(0)

∥∥∥;

3 Compute the Jacobian J f of f in x(0);
4 for k = 0, 1, 2, . . . , K do
5 if k − 1 ≡ 0 mod k̃ & k �= 1 then
6 J (k) = [J (k−1) − H (k−1)Vk−1, −J (k−1)v(k) − H (k−1)v(k)];
7 else
8 J (k) = −J f Vk ;

9 r(k) = y − f
(

Vkz(k)
)
;

10 q(k) = arg min
q∈Rdk

∥∥∥r(k) + J (k)q
∥∥∥
2
;

11 α
(k)
0 = α0;

12 j = 0;

13 while
∥∥∥r
(

Vkz(k)
)∥∥∥

2 −
∥∥∥r
(

Vk

(
z(k) + α

(k)
j q(k)

))∥∥∥
2 ≤ 1

2α
(k)
j

∥∥∥J (k)q(k)
∥∥∥
2
do

14 α
(k)
j+1 = α

(k)
j
2 ;

15 j = j + 1;

16 α(k) = α
(k)
j ;

17 z(k+1) = z(k) + α(k)q(k);

18 if
∥∥∥z(k) − z(k+1)

∥∥∥ ≤ τ

∥∥∥z(k)
∥∥∥ then

19 exit;

20 if k ≡ 0 mod k̃ & k �= 0 then
21 �x(k) = x(k+1) − x(k) and �r(k) = r(k+1) − r(k);

22 H (k) =
�r(k) − J f

(
Vkz(k)

)

∥∥�x(k)
∥∥2

(
�x(k)

)T
;

23 J f = J f + H (k);

24 else
25 Compute the Jacobian J f of f at Vkz(k+1);

26 g(k+1) = J T
f r

(k);

27 g̃(k+1) = g(k+1) − Vk V T
k g(k+1);

28 Vk+1 =
[
Vk , g̃(k+1)/

∥∥∥g̃(k+1)
∥∥∥
]
;

29 z(k+1) = [z(k+1) 0
]T

;

30 x̃∗ = Vkz(k+1);
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Algorithm 4: A restarted Gauss–Newton method using generalized Krylov subspaces

input : Nonlinear function f , data vector y, initial guess for the approximate solution x(0), initial
guess for the damping parameter α0, number of iterations after which a restarting of the GKS is
performed krest , tolerance τ , maximum number of iterations K .

output: Approximation x̃∗ of the solution x∗.
1 V0 = x(0)/

∥∥∥x(0)
∥∥∥;

2 z(0) =
∥∥∥x(0)

∥∥∥;

3 Compute the Jacobian J f of f at x(0);
4 for k = 0, 1, 2, . . . , K do
5 if k ≡ 0mod krest then
6 x = Vkz(k);
7 Vk = x/ ‖x‖;
8 J (k) = −J f Vk ;

9 r(k) = y − f
(

Vkz(k)
)
;

10 q(k) = arg min
q∈Rdk

∥∥∥r(k) + J (k)q
∥∥∥
2
;

11 α
(k)
0 = α0;

12 j = 0;

13 while
∥∥∥r
(

Vkz(k)
)∥∥∥

2 −
∥∥∥r
(

Vk

(
z(k) + α

(k)
j q(k)

))∥∥∥
2 ≤ 1

2α
(k)
j

∥∥∥J (k)q(k)
∥∥∥
2
do

14 α
(k)
j+1 = α

(k)
j
2 ;

15 j = j + 1;

16 α(k) = α
(k)
j ;

17 z(k+1) = z(k) + α(k)q(k);

18 if
∥∥∥z(k) − z(k+1)

∥∥∥ ≤ τ

∥∥∥z(k)
∥∥∥ then

19 exit;

20 Compute the Jacobian J f of f at Vkz(k+1);

21 g(k+1) = J T
f r

(k);

22 g̃(k+1) = g(k+1) − Vk V T
k g(k+1);

23 Vk+1 =
[
Vk , g̃(k+1)/

∥∥∥g̃(k+1)
∥∥∥
]
;

24 z(k+1) = [z(k+1) 0
]T

;

25 x̃∗ = Vkz(k+1);

every k̃ = 10 iterations. The updating formulas perform best if the updated Jacobian is close
to the Jacobian at xtrue. We therefore do not use the updating formulas in Algorithm 3 for
k = 1, 2, . . . , k̃. Finally, we set in Algorithm 4 the number of iterations after which the space
Vk is restarted to krest = 20. All computations were carried out in MATLAB 2021b running
on a laptop computer with an AMD Ryzen 7 5800HS CPU and 16GB of RAM.

A geophysics problem. We consider a nonlinear model from geophysics with the aim of
reconstructing the distribution of the electrical conductivity and the magnetic permeability
of the subsoil from measured data recorded with a ground conductivity meter (GCM). This
device is made up of two coils, a transmitter and a receiver. The transmitter sends electro-
magnetic waves into the subsoil, while the receiver measures the induced electromagnetic
field; see, e.g., [8, 14, 17–19] and references therein for more details on the mathematical
model and [15, 16] for numerical results obtained.
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Webriefly recall how themodel is defined. It is based onMaxwell’s equations. The subsoil
is assumed to have a layered structure with n layers of thickness d�, � = 1, 2, . . . , n. Layer
� has electric conductivity σ� and magnetic permeability μ�. The last layer is assumed to be
infinite. We define the so-called propagation constant as

u�(λ) =
√

λ2 + iσ�μ�ω, i = √−1,

where λ is the integration variable ranging from zero to infinity. It represents the ratio of
the depth below the surface measured in meters and the inter-coil distance ρ (the distance
between the transmitter and the receiver). The parameter ω stands for the angular frequency,
that is, 2π times the frequency in Hertz.

The model, which describes the interaction between the GCM and the subsoil for the
vertical and horizontal orientation of the device coils, is given by

⎧
⎪⎨

⎪⎩

MV (σ ,μ; h, ω, ρ) = −ρ3
∫ ∞

0
e−2λhλ2Rω,0(λ)J0(ρλ) dλ,

M H (σ ,μ; h, ω, ρ) = −ρ2
∫ ∞

0
e−2λhλRω,0(λ)J1(ρλ) dλ,

where σ = [σ1, . . . , σn]T , μ = [μ1, . . . , μn]T , h represents the height of the device while
measuring above the ground, Js denotes the Bessel function of the first kind of order s, and
Rω,0(λ) is the reflection factor defined as

Rω,0(λ) = N0(λ) − Y1(λ)

N0(λ) + Y1(λ)
.

Here N0(λ) = λ/(iμ0ω), μ0 = 4π · 10−7H/m is the magnetic permeability of free space
and Y1(λ) is computed by the recursive formula

Y�(λ) = N�(λ)
Y�+1(λ) + N�(λ) tanh(d�u�(λ))

N�(λ) + Y�+1(λ) tanh(d�u�(λ))
, (4.1)

for � = n − 1, n − 2, . . . , 1, where Y�(λ) is the surface admittance at the top of each layer.
The coefficient N�(λ) = u�(λ)/(iμ�ω) represents the characteristic admittance at the �-th
layer and yields the initialization of the recursion formula (4.1), that is when � = n, we set
Yn(λ) = Nn(λ).

For simplicity, we focus on the reconstruction of the distribution of the electrical conduc-
tivity and assume the magnetic permeability to be known. To this end, we construct three test
cases and consider three different profiles for the electrical conductivity: a Gaussian function,
a continuous, but not everywhere differentiable function (which we refer to as “triangular”),
and a step function. It is known that in this application the model requires the solution to be
differentiable. Therefore, the last two cases are very challenging to solve. When we construct
our test cases, we assume that there is no noise except for round-off errors. Thus, we commit
an inverse-crime. However, we remark that the Jacobian of f is so ill-conditioned that per-
turbations introduced by round-off errors produce significant fluctuations in the computed
solutions.

We set x(0) to be a constant function. Since the problem is non-convex and underdeter-
mined, the choice of the functionx(0) is important. For theGaussian and triangular profiles,we
set x0 = [0.5, 0.5, . . . , 0.5]T , while for the step function we set x0 = [1.5, 1.5, . . . , 1.5]T .
Moreover, we calibrate the instrument so thatmeasurements are taken for 10 different heights,
i.e., m = 10, and the subsoil is assumed to be composed of 100 layers, i.e., n = 100.
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Table 1 reports results obtained with Algorithms 1, 2, 3, and 4. Since the problems
considered are extremely ill-conditioned, the Gauss–Newton algorithm produces poor recon-
structions. Therefore, similarly to the Levenberg-Marquardt scheme (see, e.g., [26] and
references therein) we regularize the inversion of the Jacobian by applying Tikhonov regular-
ization; see, e.g., [21] for a discussion and analysis of Tikhonov regularization. In particular,
we solve

q(k+1) = arg min
q∈Rdk

{∥∥∥r(k) + J (k)q
∥∥∥
2 + 10−4 ‖q‖2

}
,

and refer to the algorithm so defined as “Algorithm 1 Regularized”. Here 10−4 is the regu-
larization parameter and ‖q‖2 is the regularization operator.

We can observe that, even when regularized, the Gauss–Newton algorithm fails to provide
an accurate approximation of the desired solution and the algorithm is significantly slower
than Algorithms 2, 3, and 4 both in terms of the number of iterations required and CPU time.
The latter three algorithms provide satisfactory reconstructions for all three problems and are
inexpensive computationally. Since very few iterations are performed Algorithms 2 and 4
produce basically indistinguishable results. Moreover, the use of the Broyden update reduces
the computational cost with small to no impact on the accuracy of the computed solution. We
point out that Algorithms 2, 3, and 4 do not require fine-tuning of any parameters to perform
well, and they do not require Tikhonov regularization. The number of restart iterations krest
can be fixed to 20 in all cases and, in our experience, the method is quite robust with respect
to the choice of this parameter.

Figure 1 displays the computed reconstructions determined by the regularized Gauss–
Newton method and Algorithms 2 and 3. We do not show the graphs determined by
Algorithm 1 as these computed solutions are not meaningful approximation of the desired
solutions. Moreover, we do not display the approximations computed by Algorithm 4 as they
are nearly identical to the ones obtained by Algorithms 2.

Note that we do not propose here to combine both the secant update with the restarting
of the solution subspace. The reason is twofold, firstly we do not want to complicate any
further the algorithm by inserting multiple parameters that need to be tuned. Secondly, in our
computed example few iterations are performed and the possible computational advantage
of this combination would be negligible. Moreover, the obtained algorithm would be highly
heuristic and it may be possible to expect erratic behavior. Therefore, at this time we do not
consider the combinations of these two acceleration techniques.

Partial differential equation. This example describes a nonlinear partial differential equa-
tion that can be solved with the Gauss–Newton method. Specifically, we consider the Bratu
problem {−�x(s, t) + αxs(s, t) + λex(s,t) = y, (s, t) ∈ �,

x(s, t) = 0, (s, t) ∈ ∂�,
(4.2)

where �x(s, t) stands for the Laplacian of x , xs denotes the partial derivative of x along the
s-direction, and α is a constant. We are interested in investigating how the solution changes
when the parameter λ is varied; see, e.g., [12, 24, 29] for discussions and illustrations of these
kinds of path-following problems.

We let� = [−3, 3]2 and discretize the problem with standard 2nd order finite differences
on an n × n equispaced grid. The discretized problem can be written as

arg min
x∈Rn2

∥∥y − (Lx + αDx + λex
)∥∥2 ,
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Table 1 Geophysics problem: RRE, number of iterations performed, and CPU times obtained with the con-
sidered algorithms for the three different profiles of the electrical conductivity

Profile Method RRE Iter CPU time (s)

Gaussian Algorithm 1 0.92282 100 64.04

Algorithm 1 Reg 0.68111 100 30.33

Algorithm 2 0.020354 22 7.13

Algorithm 3 0.074752 15 3.76

Algorithm 4 0.020360 20 6.54

Triangular Algorithm 1 0.53842 100 60.33

Algorithm 1 Reg 0.32460 100 30.85

Algorithm 2 0.058914 17 5.45

Algorithm 3 0.060965 14 3.83

Algorithm 4 0.058914 17 5.43

Step Algorithm 1 > 5 · 104 100 52.41

Algorithm 1 Reg 0.83263 100 30.43

Algorithm 2 0.25470 17 5.38

Algorithm 3 0.25226 19 3.58

Algorithm 4 0.25470 17 5.42
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Fig. 1 Geophysics problem: reconstruction of theGaussian (a), triangular (b), and step function (c) test profiles.
The black dotted curves show the exact solutions, the magenta dashed-dotted curves are approximations
determined by the regularized Gauss–Newton method, the blue solid curves show approximate solutions
computed byAlgorithm 2, and the red dashed curves display approximate solutions obtainedwith Algorithm 3.
Wedo not report the approximations computed byAlgorithm1 as they are notmeaningful and the ones obtained
by Algorithm 4 since they are indistinguishable from the one returned by Algorithm 2 (Color figure online)

where the entries of x represent the discretized solution arranged in lexicographical order,
L = L1 ⊗ I + I ⊗ L1, D = D1 ⊗ I , where ⊗ denotes the Kronecker product, and the
exponential is meant element-wise. We let

L1 =

⎡

⎢⎢⎢⎢⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤

⎥⎥⎥⎥⎥
⎦

∈ R
n×n and D1 =

⎡

⎢⎢⎢
⎣

−1 1
. . .

. . .

−1 1
−1

⎤

⎥⎥⎥
⎦

∈ R
n×n .
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For simplicity, once we compute the sampling of the function x and denote it by xtrue, we
construct y by

y = Lxtrue + αDxtrue + λextrue ,

i.e., we disregard approximation errors in the PDE as well as the scaling.
In our test, we let x(s, t) = e−10(s2+t2) and sample x on a 100 × 100 equispaced grid on

the square [−3, 3]2. Therefore, in (1.1), f : R104 → R
104 . The Jacobian of f at the point x

is given by

J f = L + α · D + λ · diag(ex).
Since we impose zero Dirichlet boundary conditions, L and D are Block Toeplitz with
Toeplitz Block (BTTB) matrices. Therefore, the matrix J f is a Generalized Locally Toeplitz
(GLT) matrix; see [1, 2, 22, 23]. The GLT theory furnishes a tool for studying the behavior
of the singular values of J f . Providing a complete and precise analysis of the behavior of the
singular values of J f is outside the scope of this paper. Here we just note that the singular
values of J f can be approximated quite accurately, if n2 is large enough, by a uniform
sampling over [0, π]2 of the modulus of the GLT symbol of J f . Let x : [0, 1]2 → R be the
function that x is a sampling of. Then, the GLT symbol of J f is given by

S(θ, φ, s, t) = (2 − 2 cos(θ)) + (2 − 2 cos(φ)) + α(−1 + cos(θ) − i sin(θ))) + λex(s,t),

where i = √−1, (θ, φ) ∈ [−π, π]2, and (s, t) ∈ [0, 1]2. It is straightforward to see that, if α

is large and λ is small, then the singular values of J f decay rapidly to 0 with increasing index
and, therefore, J f is ill-conditioned. On the other hand, if λ is large and α is small, then the
singular values decay slowly with increasing index and, therefore, J f is well-conditioned.
This is confirmed by Fig. 2, which displays the approximated singular values of J f for two
choices of α and λ, namely (α, λ) = (1, 10) and (α, λ) = (10, 1), with x = xtrue. We observe
that in the first case the matrix J f is very well-conditioned, while in the latter case the matrix
is poorly conditioned.We can estimate the condition number of J f in these two cases with the
MATLAB function condest. In the first case, i.e., the well-conditioned one, the computed
condition number is κ2 ≈ 3.3, while in the latter case, i.e., the ill-conditioned one, we obtain
κ2 ≈ 1.7 · 1030. This illustrates that the conditioning for large values of α is far worse than
what the GLT theory predicts.

We illustrate the performances of Algorithms 1, 2, and 4 for several choices of α and λ.
In particular, we let (α, λ) ∈ {1, 2, . . . , 10}2. Since we observed that the standard Gauss–
Newton method for some choices of α and λ stops after a single iteration, we forced this
method to carry out at least 5 iterations.

Table 2 reports the means, standard deviations, maximum values, andminimum values for
the RRE, number of iterations, and CPU times required for Algorithms 1, 2, and 4. Since the
computation of J f is very cheap, we do not consider Algorithm 3 in this example. We note
that, on average, Algorithms 1 and 4 yield less accurate computed solutions thanAlgorithm 2.
However, for some parameter pairs (α, λ) the accuracy obtained with Algorithms 1 and 4 is
much higher than with Algorithm 2. Nevertheless, the approximate solutions computed by
the latter algorithms are always fairly accurate, even in the worst case. On the other hand, the
Gauss–Newton method determines very poor reconstructions for several choices of α and λ.
Figure3a, d, g show log10(RRE) for each choice of the parameters. We can observe that, for
a fairly large number of choices of α and λ, the Gauss–Newton method performs quite poorly
in terms of accuracy, while Algorithms 2 and 4 always provides accurate reconstructions.
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Fig. 2 Partial differential
equation test case: approximation
of the singular values of J f via
the GLT theory with two different
couple of parameters (α, λ). The
solid black line is obtained for
α = 1 and λ = 10, while the
dashed gray line is for α = 10
and λ = 1

0 1 2 3 4 5 6

106

100

101

Table 2 Partial differential equation test case: means, standard deviations, maximum values, and minimum
values for the RRE, number of iterations, and CPU times obtained for Algorithms 1, 2, and 4

Method Parameter Mean Std. Dev Min Max

Algorithm 1 RRE 0.5580 0.5146 7.92 · 10−16 1.655

Iter 8.44 17.13 5 100

CPU time (s) 0.6989 0.6246 0.1125 3.09

Algorithm 2 RRE 0.0097 0.0121 8.21 · 10−6 0.0654

Iter 48.5 26.08 16 100

CPU time (s) 0.2734 0.2948 0.0269 1.0251

Algorithm 4 RRE 0.0142 0.0197 9 · 10−5 0.1261

Iter 20.34 2.85 16 40

CPU time (s) 0.0356 0.0057 0.0268 0.0763

The results are obtained for (α, λ) ∈ {1, 2, . . . , 10}2 in (4.2)

This is due to the fact that the projection into the generalized Krylov subspace regularizes
the problem without reducing the accuracy of the computed solutions.

The CPU times reported in Table 2 and in Fig. 3c, f, i illustrate that Algorithms 2 and 4
are faster in terms of CPU time than Algorithm 1, despite that the first two methods usually
require more iterations to converge than Algorithm 1. We can also observe that the speed-up
obtained by using the restarting strategy is significant as it reduces the average computational
cost by a factor of almost 10.

We nowdiscuss how theCPU times changeswhen the dimensions of the problem increase.
We fix α = 5 and λ = 10 and let n ∈ 100, 150, . . . , 1000. Therefore, when n = 1000, we
have f : R106 → R

106 . We run the considered algorithms and plot the CPU times in Fig. 4.
We can observe that, obviously, the CPU time required to solve the problem increases with
n. However, the rate of increase is substantially lower when the projection in the generalized
Krylov subspace is employed. In particular, using Algorithm 4, we can see that we are able
to solve a nonlinear problem with 106 unknowns in less than 10 seconds on a laptop.

An extremely sparse problem. In this example, we would like to show a very particular
situation when Algorithms 2 and 3 are not faster than Algorithm 1. However, we hasten to
point out that this situation arises very seldom. Introduce the nonlinear differentiable function
f : Rn → R

n−1 given by
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Fig. 3 Partial differential equation test case: RRE, number of iterations, and CPU times obtained with Algo-
rithms 1, 2, and 4 for each choice of (α, λ) ∈ {1, 2, . . . , 10}2 in (4.2). The first row reports the results
obtained with Algorithm 1, the second row shows results for Algorithm 2, and the third row contains results
for Algorithm 4

Fig. 4 Partial differential
equation test case: CPU times
obtained with
Algorithms 1, 2, and 4 with
(α, λ) = (5, 10) in (4.2) for
increasing dimensions of the
problem. The dotted gray line
reports the results obtained with
Algorithm 1, the solid black line
shows results for Algorithm 2,
and the dashed black contains
results for Algorithm 4
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Table 3 An extremely sparse
problem: RRE, number of
iterations performed, and CPU
times for Algorithms 1 and 2

Method RRE Iter CPU time (s)

Algorithm 1 0.085038 5 0.00608

Algorithm 2 0.00012168 17 0.0185

f (x) = sin

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

x1 + x2
x2 + x3

...

xn−1 + xn

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

,

where the sin operation is meant element-wise. We construct the problem by choosing as the
exact solution x ∈ R

n of the problem (1.1) a sampling of the function x = 1
2 sin(x), with

x ∈ (−π, π), on an equispaced grid with n = 103. The Jacobian J f (x) of f is bidiagonal
and given by

J f (x) =

⎡

⎢⎢⎢
⎣

cos(x1 + x2) cos(x1 + x2)
cos(x2 + x3) cos(x2 + x3)

. . .
. . .

cos(xn−1 + xn) cos(xn−1 + xn)

⎤

⎥⎥⎥
⎦

∈ R
(n−1)×n .

Least-square problems with such a matrix can be solved very inexpensively.
Table 3 reports results obtained for Algorithms 1 and 2. We note that the latter algorithm

determines amore accurate approximate solution than the former. However, since the solution
of least-squares problems with the sparse matrix J f is very inexpensive to compute and
Algorithm 1 carries out fewer iterations than Algorithm 2, the overall cost of the former
algorithm is slightly smaller than of the latter algorithm. Nevertheless, Algorithm 2 reduces
the cost per iteration significantly, when compared with Algorithm 1, and provides more
accurate reconstructions. Therefore, one may still want to use Algorithm 2 even if it is
slightly more expensive.

Note that, since Algorithm 2 carried out fewer than krest iterations, we do not report the
results for Algorithm 4 as they are identical to the ones obtained with Algorithm 2.

5 Conclusion and Extensions

This paper presents new implementations of the Gauss–Newton algorithm based on the use
of generalized Krylov subspaces. The approach described easily can be extended to other
nonlinear optimization methods such as the Levenberg-Marquardt method. We have shown
that Algorithm 2 determines approximate solutions that converge to a stationary point of
the minimized functional. Several numerical examples show that Algorithms 2, 3, and 4
outperform the standard Gauss–Newton method. Extensions to regularized problems as well
as other iterative algorithms are presently being developed.
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