1,604 research outputs found

    Endoplasmic Reticulum Quality Control Is Involved in the Mechanism of Endoglin-Mediated Hereditary Haemorrhagic Telangiectasia

    Get PDF
    Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER) quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D) out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W) out of thirteen mutants in the Zona Pellucida (ZP) domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional residues are likely to be the cause of the mutant proteins' loss of function

    Bioprospecting autochthonous marine microalgae strain from the Arabian Gulf Seawater, Kuwait for biofuel feedstocks

    Get PDF
    Bioprospecting programs are the key to increasing the current portfolio of indigenous microalgal strains accessible for different applications in microalgal biotechnology. In this work, nine fast-growing microalgal strains isolated from Kuwait's Arabian/Persian Gulf coastal waters were evaluated for their potential as biofuel feedstocks. 18S rRNA gene sequencing showed that the strains belong to five different genera: Chlorella, Nannochloris, Scenedesmus, Tetraselmis, and Nannochloropsis. In terms of the total lipid content, in comparison to the other strains, Tetraselmis sp. KUBS13G and Tetraselmis sp. KUBS16G displayed higher lipid contents of 29.56% dry weight (DW) and 26.13% DW, respectively, dominated by palmitic and oleic acids. Fuel properties calculated from the fatty acid methyl esters (FAMES) by empirical equations were compared with EN14214 (European) and ASTM D6751--02 (American) biodiesel standards. Multicriteria decision analysis (MCDA) methods, such as the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GALA), were used to select suitable microalgae for biofuel feedstock based on their biodiesel fuel properties. Overall, the results suggested that the indigenous microalgal strain Tetraselmis, particularly Tetraselmis sp. KUBS37G, and Scenedesmus sp. KUB Sl7R are the most suitable strains for biofuel feedstock owing to their improved fuel properties, such as density (rho) (0.88 g cm-3), low kinematic viscosity (3.1 mm2 s-1), high cetane number (54 and 56, respectively), high oxidation stability (14.6 hr and 14.8 hr), and cold filter plugging point (1.0 degrees C and -6.1 degrees C).info:eu-repo/semantics/publishedVersio

    A Systematic Design of a Compact Wideband Hybrid Directional Coupler Based on Printed RGW Technology

    Get PDF
    Printed ridge gap waveguide (PRGW) is considered among the state of art guiding technologies due to its low signal distortion and low loss at Millimeter Wave (mmWave) spectrum, which motivates the research community to use this guiding structure as a host technology for various passive microwave and mmWave components. One of the most important passive components used in antenna beam-switching networks is the quadrature hybrid directional coupler providing signal power division with 90° phase shift. A featured design of a broadband and compact PRGW hybrid coupler is propose in this paper. A novel design methodology, based on mode analysis, is introduced to design the objective coupler. The proposed design is suitable for mmWave applications with small electrical dimensions ( 1.2λo×1.2λo ), low loss, and wide bandwidth. The proposed hybrid coupler is fabricated on Roger/RT 6002 substrate material of thickness 0.762 mm. The measured results highlight that the coupler can provide a good return loss with a bandwidth of 26.5% at 30 GHz and isolation beyond 15 dB. The measured phase difference between the coupler output ports is equal 90∘± 5∘ through the interested operating bandwidth. A clear agreement between the simulated and the measured results over the assigned operating bandwidth has been illustrated

    Changes in the Invasion Rate of Prosopis juliflora and Its Impact on Depletion of Groundwater in the Northern Part of the United Arab Emirates

    Get PDF
    Prosopis species were introduced to the United Arab Emirates (UAE) region for desert greening. However, the species now pose a great threat to the native plant diversity. This study used high-resolution satellite imagery (1990–2019) to understand the history and current distribution of Prosopis species and their impact on fresh groundwater. The results show that the Prosopis invasion in the study area reached its maximum expansion rate in 2019 and covered an area of about 16 km2 compared to 0.2 km2 in 1990. The areas near Sharjah Airport, Umm Fannan, and Al Talla, located at a lower elevation of the sand dune area, are heavily invaded. Prosopis groundwater requirement derived using evapotranspiration shows that groundwater consumption has changed drastically after 2010 and consumed about 22.22 million m3 of groundwater in 2019, which is about a 7372% increase in groundwater consumption from the year 1990 to 2019. The results can be useful for setting up a management plan for the sustainable use of this species in the UAE region in particular and other similar countries in the arid land regions that are suffering from freshwater depletion because of Prosopis invasion

    Progressive non-infectious anterior vertebral fusion, split cord malformation and situs inversus visceralis

    Get PDF
    BACKGROUND: Progressive non-infectious anterior vertebral fusion is a unique spinal disorder with distinctive radiological features. Early radiographic findings consist of narrowing of the anterior aspect of the intervertebral disk with adjacent end plate erosions. There is a specific pattern of progression. The management needs a multi-disciplinary approach with major input from the orthopaedic surgeon. CASE REPORT: We report a 12-year-old-female with progressive anterior vertebral fusion. This occurred at three vertebral levels. In the cervical spine there was progressive fusion of the lateral masses of the Axis with C3. Secondly, at the cervico-thoracic level, a severe, progressive, anterior thoracic vertebral fusion (C7-T5) and (T6-T7) resulted in the development of a thick anterior bony ridge and massive sclerosis and thirdly; progressive anterior fusion at L5-S1. Whereas at the level of the upper lumbar spines (L1) a split cord malformation was encountered. Situs inversus visceralis was an additional malformation. The role of the CT scan in detecting the details of the vertebral malformations was important. To our knowledge, neither this malformation complex and nor the role of the CT scan in evaluating these patients, have previously been described. CONCLUSION: The constellations of the skeletal abnormalities in our patient do not resemble any previously reported conditions with progressive anterior vertebral fusion. We also emphasise the important role of computerized tomography in the investigation of these patients in order to improve our understanding of the underlying pathology, and to comprehend the various stages of the progressive fusion process. 3D-CT scan was performed to improve assessment of the spinal changes and to further evaluate the catastrophic complications if fracture of the ankylosed vertebrae does occur. We believe that prompt management cannot be accomplished, unless the nature of these bony malformations is clarified

    Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model.

    Get PDF
    BACKGROUND: Most projections of type 2 diabetes (T2D) prevalence are simply based on demographic change (i.e. ageing). We developed a model to predict future trends in T2D prevalence in Tunisia, explicitly taking into account trends in major risk factors (obesity and smoking). This could improve assessment of policy options for prevention and health service planning. METHODS: The IMPACT T2D model uses a Markov approach to integrate population, obesity and smoking trends to estimate future T2D prevalence. We developed a model for the Tunisian population from 1997 to 2027, and validated the model outputs by comparing with a subsequent T2D prevalence survey conducted in 2005. RESULTS: The model estimated that the prevalence of T2D among Tunisians aged over 25 years was 12.0% in 1997 (95% confidence intervals 9.6%-14.4%), increasing to 15.1% (12.5%-17.4%) in 2005. Between 1997 and 2005, observed prevalence in men increased from 13.5% to 16.1% and in women from 12.9% to 14.1%. The model forecast for a dramatic rise in prevalence by 2027 (26.6% overall, 28.6% in men and 24.7% in women). However, if obesity prevalence declined by 20% in the 10 years from 2013, and if smoking decreased by 20% over 10 years from 2009, a 3.3% reduction in T2D prevalence could be achieved in 2027 (2.5% in men and 4.1% in women). CONCLUSIONS: This innovative model provides a reasonably close estimate of T2D prevalence for Tunisia over the 1997-2027 period. Diabetes burden is now a significant public health challenge. Our model predicts that this burden will increase significantly in the next two decades. Tackling obesity, smoking and other T2D risk factors thus needs urgent action. Tunisian decision makers have therefore defined two strategies: obesity reduction and tobacco control. Responses will be evaluated in future population surveys

    Fuzzy Logic Based Self-Adaptive Handover Algorithm for MobileWiMAX.

    Get PDF
    It is well known that WiMAX is a broadband technology that is capable of delivering triple play (voice, data, and video) services. However, mobility in WiMAX system is still a main issue when the mobile station (MS) moves across the base station (BS) coverage and be handed over between BSs. Among the challenging issues in mobile WiMAX handover are unnecessary handover, handover failure and handover delay, which may affect real-time applications. The conventional handover decision algorithm in mobile WiMAX is based on a single criterion, which usually uses the received signal strength indicator (RSSI) as an indicator, with the other fixed handover parameters such as handover threshold and handover margin. In this paper, a fuzzy logic based self-adaptive handover (FuzSAHO) algorithm is introduced. The proposed algorithm is derived from the self-adaptive handover parameters to overcome the mobile WiMAX ping-pong handover and handover delay issues. Hence, the proposed FuzSAHO is initiated to check whether a handover is necessary or not which depends on its fuzzy logic stage. The proposed FuzSAHO algorithm will first self-adapt the handover parameters based on a set of multiple criteria, which includes the RSSI and MS velocity. Then the handover decision will be executed according to the handover parameter values. Simulation results show that the proposed FuzSAHO algorithm reduces the number of ping-pong handover and its delay. When compared with RSSI based handover algorithm and mobility improved handover (MIHO) algorithm, respectively, FuzSAHO reduces the number of handovers by 12.5 and 7.5 %, respectively, when the MS velocity is <17 m/s. In term of handover delay, the proposed FuzSAHO algorithm shows an improvement of 27.8 and 8 % as compared to both conventional and MIHO algorithms, respectively. Thus, the proposed multi-criteria with fuzzy logic based self-adaptive handover algorithm called FuzSAHO, outperforms both conventional and MIHO handover algorithms

    Novel Polyepoxysuccinic Acid-Grafted Polyacrylamide as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution.

    Get PDF
    Utilizing green corrosion inhibitors has been classified among the most efficient and economical mitigation practices against metallic degradation and failure. This study aims to integrate the features of green and complementary properties of polyepoxysuccinic acid (PESA) and polyacrylamide (PAM) for steel corrosion inhibition. A novel PESA-grafted-PAM (PESAPAM) has been first-ever synthesized in this research study and deployed as a corrosion inhibitor for C-steel in 1.0 M HCl solution. Eco-toxicity prediction confirmed the environmentally friendly properties acquired by the synthesized inhibitor. Electrochemical, kinetics, and surface microscopic studies were carried out to gain a holistic view of C-steel corrosion behavior with the PESAPAM. Furthermore, the performance of PESAPAM was compared with that of the pure PESA under the same testing conditions. Results revealed predominant inhibitive properties of PESAPAM with an inhibition efficiency (IE) reaching 90% at 500 mg·L at 25 °C. Grafting PAM onto the PESA chain showed an overall performance improvement of 109% from IE% of 43 to 90%. Electrochemical measurements revealed a charge transfer-controlled corrosion mechanism and the formation of a thick double layer on the steel surface. The potentiodynamic study classified PESAPAM as a mixed-type inhibitor. Furthermore, the investigation of C-steel corrosion kinetics with the presence of PESAPAM predicted an activation energy of 85 kJ·mol, correlated with a physical adsorption behavior. Finally, performed scanning electron microscopy and energy-dispersive X-ray analyses confirmed the adsorption of PESA and PESAPAM, with superior coverage of PESAPAM onto the steel surface.This work was made possible by the support of the Undergraduate Research Experience Program (UREP) from Qatar National Research Fund (QNRF), grant #UREP28-104-2-036. R.J. would like to acknowledge the support of Qatar University project, grant #QUCP-CENG-2021-03. The findings achieved herein are solely the responsibility of the authors. Central Laboratories Unit at Qatar University are acknowledged for providing facilities to perform SEM/EDX analyses. Qatar National Library (QNL) is acknowledged for providing open access funding
    corecore