1,644 research outputs found
The effect of daily /24 hour/ precession of the geomagnetic dipole on the creation of Sq-variations
Daily procession of geomagnetic dipole effect on ionospheric Sq variation
KIC011764567: An evolved object showing substantial flare-activity
We intensively studied the flare activity on the stellar object KIC011764567.
The star was thought to be solar type, with a temperature of K, dex and a rotational period of Prot 22
d (Brown et al. 2011). High resolution spectra turn the target to an evolved
object with Teff = (5300 \pm 150) K, a metalicity of ,
a surface gravity of dex, and a projected rotational
velocity of . Within an observing time span of
4 years we detected 150 flares in Kepler data in an energy range of  erg. From a dynamical Lomb-Scargle periodogram we have evidence for
differential rotation as well as for stellar spot evolution and migration.
Analysing the occurrence times of the flares we found hints for a periodic
flare frequency cycle of d, the significance increases with an
increasing threshold of the flares equivalent duration. One explanation is a
very short activity cycle of the star with that period. Another possibility,
also proposed by others in similar cases, is that the larger flares may be
triggered by external phenomena, such as magnetically interaction with an
unseen companion. Our high resolution spectra show that KIC011764567 is not a
short period binary star
Distilling entanglement from cascades with partial "Which Path" ambiguity
We develop a framework to calculate the density matrix of a pair of photons
emitted in a decay cascade with partial "which path" ambiguity. We describe an
appropriate entanglement distillation scheme which works also for certain
random cascades. The qualitative features of the distilled entanglement are
presented in a two dimensional "phase diagram". The theory is applied to the
quantum tomography of the decay cascade of a biexciton in a semiconductor
quantum dot. Agreement with experiment is obtained
Role of Fragment Higher Static Deformations in the Cold Binary Fission of Cf
We study the binary cold fission of Cf in the frame of a cluster
model where the fragments are born to their respective ground states and
interact via a double-folded potential with deformation effects taken into
account up to multipolarity . The preformation factors were
neglected. In the case when the fragments are assumed to be spherical or with
ground state quadrupole deformation, the -value principle dictates the
occurence of a narrow region around the double magic Sn, like in the
case of cluster radioactivity. When the hexadecupole deformation is turned on,
an entire mass-region of cold fission in the range 138 - 156 for the heavy
fragment arise, in agreement with the experimental observations.
  This fact suggests that in the above mentioned mass-region, contrary to the
usual cluster radioactivity where the daughter nucleus is always a
neutron/proton (or both) closed shell or nearly closed shell spherical nucleus,
the clusterization mechanism seems to be strongly influenced by the
hexadecupole deformations rather than the -value.Comment: 10 pages, 12 figure
Dysfunctional play and dopamine physiology in the Fischer 344 rat
Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA) systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition (PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to the execution of these behaviors
Three-body correlations in direct reactions: Example of Be populated in reaction
The Be continuum states were populated in the charge-exchange reaction
H(Li,Be) collecting very high statistics data ( events) on the three-body ++ correlations. The
Be excitation energy region below  MeV is considered, where the
data are dominated by contributions from the  and  states. It is
demonstrated how the high-statistics few-body correlation data can be used to
extract detailed information on the reaction mechanism. Such a derivation is
based on the fact that highly spin-aligned states are typically populated in
the direct reactions.Comment: submitted to Physical Review 
Calculations of He+p Elastic Cross Sections Using Microscopic Optical Potential
An approach to calculate microscopic optical potential (OP) with the real
part obtained by a folding procedure and with the imaginary part inherent in
the high-energy approximation (HEA) is applied to study the He+p elastic
scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and
proton density distributions obtained in different models for He are
utilized in the calculations of the differential cross sections. The role of
the spin-orbit potential is studied. Comparison of the calculations with the
available experimental data on the elastic scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The
problem of the ambiguities of the depths of each component of the optical
potential is considered by means of the imposed physical criterion related to
the known behavior of the volume integrals as functions of the incident energy.
It is shown also that the role of the surface absorption is rather important,
in particular for the lowest incident energies (e.g., 15.7 and 26.25
MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review 
- …
