1,644 research outputs found

    The effect of daily /24 hour/ precession of the geomagnetic dipole on the creation of Sq-variations

    Get PDF
    Daily procession of geomagnetic dipole effect on ionospheric Sq variation

    KIC011764567: An evolved object showing substantial flare-activity

    Full text link
    We intensively studied the flare activity on the stellar object KIC011764567. The star was thought to be solar type, with a temperature of Teff=(5640±200)T_{eff} = (5640 \pm 200)\,K, log(g)=(4.3±0.3)\log(g) = (4.3 \pm 0.3)\,dex and a rotational period of Prot 22 d (Brown et al. 2011). High resolution spectra turn the target to an evolved object with Teff = (5300 \pm 150) K, a metalicity of [m/H]=(0.5±0.2)[m/H] = (-0.5 \pm 0.2), a surface gravity of log(g)=(3.3±0.4)log(g) = (3.3 \pm 0.4)\,dex, and a projected rotational velocity of vsini=(22±1)kms1v sin i = (22 \pm 1)\,kms^{-1}. Within an observing time span of 4 years we detected 150 flares in Kepler data in an energy range of 1036103710^{36} - 10^{37} erg. From a dynamical Lomb-Scargle periodogram we have evidence for differential rotation as well as for stellar spot evolution and migration. Analysing the occurrence times of the flares we found hints for a periodic flare frequency cycle of 430460430 - 460 d, the significance increases with an increasing threshold of the flares equivalent duration. One explanation is a very short activity cycle of the star with that period. Another possibility, also proposed by others in similar cases, is that the larger flares may be triggered by external phenomena, such as magnetically interaction with an unseen companion. Our high resolution spectra show that KIC011764567 is not a short period binary star

    Distilling entanglement from cascades with partial "Which Path" ambiguity

    Full text link
    We develop a framework to calculate the density matrix of a pair of photons emitted in a decay cascade with partial "which path" ambiguity. We describe an appropriate entanglement distillation scheme which works also for certain random cascades. The qualitative features of the distilled entanglement are presented in a two dimensional "phase diagram". The theory is applied to the quantum tomography of the decay cascade of a biexciton in a semiconductor quantum dot. Agreement with experiment is obtained

    Role of Fragment Higher Static Deformations in the Cold Binary Fission of 252^{252}Cf

    Get PDF
    We study the binary cold fission of 252^{252}Cf in the frame of a cluster model where the fragments are born to their respective ground states and interact via a double-folded potential with deformation effects taken into account up to multipolarity λ=4\lambda=4. The preformation factors were neglected. In the case when the fragments are assumed to be spherical or with ground state quadrupole deformation, the QQ-value principle dictates the occurence of a narrow region around the double magic 132^{132}Sn, like in the case of cluster radioactivity. When the hexadecupole deformation is turned on, an entire mass-region of cold fission in the range 138 - 156 for the heavy fragment arise, in agreement with the experimental observations. This fact suggests that in the above mentioned mass-region, contrary to the usual cluster radioactivity where the daughter nucleus is always a neutron/proton (or both) closed shell or nearly closed shell spherical nucleus, the clusterization mechanism seems to be strongly influenced by the hexadecupole deformations rather than the QQ-value.Comment: 10 pages, 12 figure

    Dysfunctional play and dopamine physiology in the Fischer 344 rat

    Full text link
    Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA) systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition (PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to the execution of these behaviors

    Three-body correlations in direct reactions: Example of 6^{6}Be populated in (p,n)(p,n) reaction

    Get PDF
    The 6^{6}Be continuum states were populated in the charge-exchange reaction 1^1H(6^{6}Li,6^{6}Be)nn collecting very high statistics data (5×106\sim 5 \times 10^6 events) on the three-body α\alpha+pp+pp correlations. The 6^{6}Be excitation energy region below 3\sim 3 MeV is considered, where the data are dominated by contributions from the 0+0^+ and 2+2^+ states. It is demonstrated how the high-statistics few-body correlation data can be used to extract detailed information on the reaction mechanism. Such a derivation is based on the fact that highly spin-aligned states are typically populated in the direct reactions.Comment: submitted to Physical Review

    Calculations of 8^{8}He+p Elastic Cross Sections Using Microscopic Optical Potential

    Full text link
    An approach to calculate microscopic optical potential (OP) with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation (HEA) is applied to study the 8^8He+p elastic scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and proton density distributions obtained in different models for 8^{8}He are utilized in the calculations of the differential cross sections. The role of the spin-orbit potential is studied. Comparison of the calculations with the available experimental data on the elastic scattering differential cross sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The problem of the ambiguities of the depths of each component of the optical potential is considered by means of the imposed physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies (e.g., 15.7 and 26.25 MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review
    corecore