14 research outputs found

    On Kedlaya type inequalities for weighted means

    Get PDF
    In 2016 we proved that for every symmetric, repetition invariant and Jensen concave mean M\mathscr{M} the Kedlaya-type inequality A(x1,M(x1,x2),,M(x1,,xn))M(x1,A(x1,x2),,A(x1,,xn)) \mathscr{A}\big(x_1,\mathscr{M}(x_1,x_2),\ldots,\mathscr{M}(x_1,\ldots,x_n)\big)\le \mathscr{M} \big(x_1, \mathscr{A}(x_1,x_2),\ldots,\mathscr{A}(x_1,\ldots,x_n)\big) holds for an arbitrary (xn)(x_n) (A\mathscr{A} stands for the arithmetic mean). We are going to prove the weighted counterpart of this inequality. More precisely, if (xn)(x_n) is a vector with corresponding (non-normalized) weights (λn)(\lambda_n) and Mi=1n(xi,λi)\mathscr{M}_{i=1}^n(x_i,\lambda_i) denotes the weighted mean then, under analogous conditions on M\mathscr{M}, the inequality Ai=1n(Mj=1i(xj,λj),λi)Mi=1n(Aj=1i(xj,λj),λi) \mathscr{A}_{i=1}^n \big(\mathscr{M}_{j=1}^i (x_j,\lambda_j),\:\lambda_i\big) \le \mathscr{M}_{i=1}^n \big(\mathscr{A}_{j=1}^i (x_j,\lambda_j),\:\lambda_i\big) holds for every (xn)(x_n) and (λn)(\lambda_n) such that the sequence (λkλ1++λk)(\frac{\lambda_k}{\lambda_1+\cdots+\lambda_k}) is decreasing.Comment: J. Inequal. Appl. (2018

    Some New Refined General Boas-Type Inequalities

    No full text
    We state and prove a new refined Boas-type inequality in a setting with a topological space and general σ-finite and finite Borel measures. As a consequence of the result obtained, we derive a new class of Hardy- and Pólya-Knopp-type inequalities related to balls in ℝn and prove that constant factors involved in their right-hand sides are the best possible
    corecore