Chen and Zhang Journal of Inequalities and Applications (2017) 2017:205 DOI 10.1186/s13660-017-1479-8

 Journal of Inequalities and Applications a SpringerOpen Journal

### RESEARCH Open Access



# Padé approximant related to inequalities involving the constant e and a generalized Carleman-type inequality

Chao-Ping Chen\* and Hui-Jie Zhang

\*Correspondence: chenchaoping@sohu.com School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454000, China

#### **Abstract**

Based on the Padé approximation method, in this paper we determine the coefficients  $a_i$  and  $b_i$  ( $1 \le j \le k$ ) such that

$$\frac{1}{e}\left(1+\frac{1}{x}\right)^{x} = \frac{x^{k}+a_{1}x^{k-1}+\cdots+a_{k}}{x^{k}+b_{1}x^{k-1}+\cdots+b_{k}} + O\left(\frac{1}{x^{2k+1}}\right), \quad x \to \infty,$$

where  $k \ge 1$  is any given integer. Based on the obtained result, we establish new upper bounds for  $(1 + 1/x)^x$ . As an application, we give a generalized Carleman-type inequality.

MSC: 26D15; 41A60

**Keywords:** Carleman's inequality; weight coefficient; Padé approximant

#### 1 Introduction

Let  $a_n \ge 0$  for  $n \in \mathbb{N} := \{1, 2, ...\}$  and  $0 < \sum_{n=1}^{\infty} a_n < \infty$ . Then

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} a_n.$$
 (1.1)

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [1] by Carleman and it is called Carleman's inequality. Carleman discovered this inequality during his important work on quasi-analytical functions.

Carleman's inequality (1.1) was generalized by Hardy [2] (see also [3, p.256]) as follows: If  $a_n \ge 0$ ,  $\lambda_n > 0$ ,  $\Lambda_n = \sum_{m=1}^n \lambda_m$  for  $n \in \mathbb{N}$ , and  $0 < \sum_{n=1}^\infty \lambda_n a_n < \infty$ , then

$$\sum_{n=1}^{\infty} \lambda_n \left( a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n} \right)^{1/\Lambda_n} < e \sum_{n=1}^{\infty} \lambda_n a_n. \tag{1.2}$$

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted Carleman-type inequality. In [2], Hardy himself said that it was Pólya who pointed out this inequality to him.



In [4–20], some strengthened and generalized results of (1.1) and (1.2) have been given by estimating the weight coefficient  $(1 + 1/n)^n$ . For example, Yang [17] proved that, for  $n \in \mathbb{N}$ .

$$e\left(1 - \frac{1}{2(n + \frac{5}{6})}\right) < \left(1 + \frac{1}{n}\right)^n < e\left(1 - \frac{1}{2(n+1)}\right),$$
 (1.3)

and then used it to obtain the following strengthened Carleman inequality:

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left( 1 - \frac{1}{2(n+1)} \right) a_n.$$
 (1.4)

Xie and Zhong [15] proved that, for  $x \ge 1$ ,

$$e\left(1 - \frac{7}{14x + 12}\right) < \left(1 + \frac{1}{x}\right)^x < e\left(1 - \frac{6}{12x + 11}\right),$$
 (1.5)

and then used it to improve the Carleman-type inequality (1.2) as follows. If  $0 < \lambda_{n+1} \le \lambda_n$ ,  $\Lambda_n = \sum_{m=1}^n \lambda_m$ ,  $a_n \ge 0$  for  $n \in \mathbb{N}$ , and  $0 < \sum_{n=1}^\infty \lambda_n a_n < \infty$ , then

$$\sum_{n=1}^{\infty} \lambda_{n+1} \left( a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n} \right)^{1/\Lambda_n} < e \sum_{n=1}^{\infty} \left( 1 - \frac{6}{12(\frac{\Lambda_n}{\lambda_n}) + 11} \right) \lambda_n a_n.$$
 (1.6)

Taking  $\lambda_n \equiv 1$  in (1.6) yields

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left( 1 - \frac{6}{12n+11} \right) a_n, \tag{1.7}$$

which improves (1.4).

Recently, Mortici and Hu [14] proved that, for  $x \ge 1$ ,

$$\frac{x + \frac{5}{12}}{x + \frac{11}{12}} - \frac{5}{288x^3} + \frac{343}{8,640x^4} - \frac{2,621}{41,472x^5} < \frac{1}{e} \left(1 + \frac{1}{x}\right)^x < \frac{x + \frac{5}{12}}{x + \frac{11}{12}} - \frac{5}{288x^3} + \frac{343}{8,640x^4} - \frac{2,621}{41,472x^5} + \frac{300,901}{3,483,648x^6}, \tag{1.8}$$

and then they used it to establish the following improvement of Carleman's inequality:

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n}$$

$$< e \sum_{n=1}^{\infty} \left( \frac{12n+5}{12n+11} - \frac{5}{288n^3} + \frac{343}{8,640n^4} - \frac{2,621}{41,472n^5} + \frac{300,901}{3,483,648n^6} \right) a_n,$$

which can be written as

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} (1 - \varepsilon_n) a_n, \tag{1.9}$$

where

$$\varepsilon_n = \frac{104,509,440n^6 + 3,628,800n^4 - 4,971,456n^3 + 5,603,472n^2 - 5,945,040n - 16,549,555}{17,418,240n^6(12n+11)}. \tag{1.10}$$

For information as regards the history of Carleman-type inequalities, please refer to [21–24].

It follows from (1.8) that

$$\frac{1}{e}\left(1+\frac{1}{x}\right)^{x} = \frac{x+\frac{5}{12}}{x+\frac{11}{12}} + O\left(\frac{1}{x^{3}}\right), \quad x \to \infty.$$
 (1.11)

Using the Padé approximation method, in Section 3 we derive (1.11) and the following approximation formula:

$$\frac{1}{e} \left( 1 + \frac{1}{x} \right)^x = \frac{x^2 + \frac{87}{100}x + \frac{37}{240}}{x^2 + \frac{137}{100}x + \frac{457}{1200}} + O\left(\frac{1}{x^5}\right), \quad x \to \infty.$$
 (1.12)

Equation (1.12) motivates us to present the following inequality:

$$\left(1+\frac{1}{n}\right)^n < e\left(\frac{n^2+\frac{87}{100}n+\frac{37}{240}}{n^2+\frac{137}{100}n+\frac{457}{1,200}}\right) = e\left(1-\frac{8(75n+34)}{1,200n^2+1,644n+457}\right), \quad n \in \mathbb{N}. \quad (1.13)$$

Following the same method used in the proof of Theorem 3.2, we can prove the inequality (1.13). We here omit it.

According to Pólya's proof of (1.1) in [25],

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} \le \sum_{n=1}^{\infty} \left( 1 + \frac{1}{n} \right)^n a_n, \tag{1.14}$$

and then the following strengthened Carleman's inequality is derived directly from (1.13):

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left( 1 - \frac{8(75n + 34)}{1,200n^2 + 1,644n + 457} \right) a_n, \tag{1.15}$$

which improves (1.7).

Based on the Padé approximation method, we determine the coefficients  $a_j$  and  $b_j$  ( $1 \le j \le k$ ) such that

$$\frac{1}{e} \left( 1 + \frac{1}{x} \right)^x = \frac{x^k + a_1 x^{k-1} + \dots + a_k}{x^k + b_1 x^{k-1} + \dots + b_k} + O\left(\frac{1}{x^{2k+1}}\right), \quad x \to \infty,$$
(1.16)

where  $k \ge 1$  is any given integer. Based on the obtained result, we establish new upper bounds for  $(1 + 1/x)^x$ . As an application, we give a generalization to the Carleman-type inequality.

The numerical values given have been calculated using the computer program MAPLE 13.

#### 2 A useful lemma

For later use, we introduce the following set of partitions of an integer  $n \in \mathbb{N} = \mathbb{N}_0 \setminus \{0\} := \{1, 2, 3, ...\}$ :

$$\mathcal{A}_n := \left\{ (k_1, k_2, \dots, k_n) \in \mathbb{N}_0^n : k_1 + 2k_2 + \dots + nk_n = n \right\}. \tag{2.1}$$

In number theory, the partition function p(n) represents the number of possible partitions of  $n \in \mathbb{N}$  (*e.g.*, the number of distinct ways of representing n as a sum of natural numbers regardless of order). By convention, p(0) = 1 and p(n) = 0 if n is a negative integer. For more information on the partition function p(n), please refer to [26] and the references therein. The first values of the partition function p(n) are (starting with p(0) = 1) (see [27]):

It is easy to see that the cardinality of the set  $A_n$  is equal to the partition function p(n). Now we are ready to present a formula which determines the coefficients  $a_j$  in (2.2) with the help of the partition function given by the following lemma.

**Lemma 2.1** ([28]) *The following approximation formula holds true*:

$$\left(1 + \frac{1}{x}\right)^x = e \sum_{i=0}^{\infty} \frac{c_i}{x^i} \quad as \ x \to \infty, \tag{2.2}$$

where the coefficients  $c_i$   $(j \in \mathbb{N})$  are given by

$$c_0 = 1$$
 and  $c_j = (-1)^j \sum_{(k_1, k_2, \dots, k_j) \in \mathcal{A}_j} \frac{1}{k_1! k_2! \cdots k_j!} \left(\frac{1}{2}\right)^{k_1} \left(\frac{1}{3}\right)^{k_2} \cdots \left(\frac{1}{j+1}\right)^{k_j},$  (2.3)

where the  $A_j$  (for  $j \in \mathbb{N}$ ) are given in (2.1).

#### 3 Padé approximant related to asymptotics for the constant e

For later use, we introduce the Padé approximant (see [29-34]). Let f be a formal power series

$$f(t) = c_0 + c_1 t + c_2 t^2 + \cdots$$
 (3.1)

The Padé approximation of order (p,q) of the function f is the rational function, denoted by

$$[p/q]_f(t) = \frac{\sum_{j=0}^p a_j t^j}{1 + \sum_{j=1}^q b_j t^j},$$
(3.2)

where  $p \ge 0$  and  $q \ge 1$  are two given integers, the coefficients  $a_j$  and  $b_j$  are given by (see [29–31, 33, 34])

$$\begin{cases} a_{0} = c_{0}, \\ a_{1} = c_{0}b_{1} + c_{1}, \\ a_{2} = c_{0}b_{2} + c_{1}b_{1} + c_{2}, \\ \vdots \\ a_{p} = c_{0}b_{p} + \dots + c_{p-1}b_{1} + c_{p}, \\ 0 = c_{p+1} + c_{p}b_{1} + \dots + c_{p-q+1}b_{q}, \\ \vdots \\ 0 = c_{p+q} + c_{p+q-1}b_{1} + \dots + c_{p}b_{q}, \end{cases}$$

$$(3.3)$$

and the following holds:

$$[p/q]_f(t) - f(t) = O(t^{p+q+1}). (3.4)$$

Thus, the first p + q + 1 coefficients of the series expansion of  $[p/q]_f$  are identical to those of f. Moreover, we have (see [32])

$$[p/q]_{f}(t) = \frac{\begin{vmatrix} t^{q} f_{p-q}(t) & t^{q-1} f_{p-q+1}(t) & \cdots & f_{p}(t) \\ c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p} & c_{p+1} & \cdots & c_{p+q} \end{vmatrix}}{\begin{vmatrix} t^{q} & t^{q-1} & \cdots & 1 \\ c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p} & c_{p+1} & \cdots & c_{p+q} \end{vmatrix}},$$

$$(3.5)$$

with  $f_n(x) = c_0 + c_1 x + \cdots + c_n x^n$ , the *n*th partial sum of the series  $f(f_n)$  is identically zero for n < 0).

Let

$$f(x) = \frac{1}{e} \left( 1 + \frac{1}{x} \right)^x. \tag{3.6}$$

It follows from (2.2) that, as  $x \to \infty$ ,

$$f(x) = \sum_{i=0}^{\infty} \frac{c_j}{x^i} = 1 - \frac{1}{2x} + \frac{11}{24x^2} - \frac{7}{16x^3} + \frac{2,447}{5,760x^4} - \frac{959}{2,304x^5} + \frac{238,043}{580,608x^6} - \cdots, \quad (3.7)$$

with the coefficients  $c_j$  given by (2.3). In what follows, the function f is given in (3.6). We now give a derivation of equation (1.11). To this end, we consider

$$[1/1]_f(x) = \frac{\sum_{j=0}^1 a_j x^{-j}}{1 + \sum_{j=1}^1 b_j x^{-j}}.$$

Noting that

$$c_0 = 1,$$
  $c_1 = -\frac{1}{2},$   $c_2 = \frac{11}{24},$   $c_3 = -\frac{7}{16},$   $c_4 = \frac{2,447}{5,760}$  (3.8)

holds, we have, by (3.3),

$$\begin{cases} a_0 = 1, \\ a_1 = b_1 - \frac{1}{2}, \\ 0 = \frac{11}{24} - \frac{1}{2}b_1, \end{cases}$$

that is,

$$a_0 = 1$$
,  $a_1 = \frac{5}{12}$ ,  $b_1 = \frac{11}{12}$ .

We thus obtain

$$[1/1]_f(x) = \frac{1 + \frac{5}{12x}}{1 + \frac{11}{12x}} = \frac{x + \frac{5}{12}}{x + \frac{11}{12}},\tag{3.9}$$

and we have, by (3.4),

$$\frac{1}{e} \left( 1 + \frac{1}{x} \right)^x - \frac{x + \frac{5}{12}}{x + \frac{11}{12}} = O\left( \frac{1}{x^3} \right), \quad x \to \infty.$$
 (3.10)

We now give a derivation of equation (1.12). To this end, we consider

$$[2/2]_f(x) = \frac{\sum_{j=0}^2 a_j x^{-j}}{1 + \sum_{j=1}^2 b_j x^{-j}}.$$

Noting that (3.8) holds, we have, by (3.3),

$$\begin{cases} a_0 = 1, \\ a_1 = b_1 - \frac{1}{2}, \\ a_2 = b_2 - \frac{1}{2}b_1 + \frac{11}{24}, \\ 0 = -\frac{7}{16} + \frac{11}{24}b_1 - \frac{1}{2}b_2, \\ 0 = \frac{2,447}{5,760} - \frac{7}{16}b_1 + \frac{11}{24}b_2, \end{cases}$$

that is,

$$a_0 = 1$$
,  $a_1 = \frac{87}{100}$ ,  $a_2 = \frac{37}{240}$ ,  $b_1 = \frac{137}{100}$ ,  $b_2 = \frac{457}{1200}$ .

We thus obtain

$$[2/2]_f(x) = \frac{1 + \frac{87}{100x} + \frac{37}{240x^2}}{1 + \frac{137}{100x} + \frac{457}{1200x^2}} = \frac{x^2 + \frac{87}{100}x + \frac{37}{240}}{x^2 + \frac{137}{100}x + \frac{457}{1200}}$$
(3.11)

and we have, by (3.4),

$$\frac{1}{e} \left( 1 + \frac{1}{x} \right)^x - \frac{x^2 + \frac{87}{100}x + \frac{37}{240}}{x^2 + \frac{137}{100}x + \frac{457}{1200}} = O\left(\frac{1}{x^5}\right), \quad x \to \infty.$$
 (3.12)

Using the Padé approximation method and the expansion (3.7), we now present a general result given by Theorem 3.1. As a consequence, we obtain (1.16).

**Theorem 3.1** The Padé approximation of order (p,q) of the asymptotic formula of the function  $f(x) = \frac{1}{e}(1 + \frac{1}{x})^x$  (at the point  $x = \infty$ ) is the following rational function:

$$[p/q]_f(x) = \frac{1 + \sum_{j=1}^p a_j x^{-j}}{1 + \sum_{j=1}^q b_j x^{-j}} = x^{q-p} \left( \frac{x^p + a_1 x^{p-1} + \dots + a_p}{x^q + b_1 x^{q-1} + \dots + b_q} \right), \tag{3.13}$$

where  $p \ge 1$  and  $q \ge 1$  are two given integers, the coefficients  $a_i$  and  $b_i$  are given by

$$\begin{cases} a_{1} = b_{1} + c_{1}, \\ a_{2} = b_{2} + c_{1}b_{1} + c_{2}, \\ \vdots \\ a_{p} = b_{p} + \dots + c_{p-1}b_{1} + c_{p}, \\ 0 = c_{p+1} + c_{p}b_{1} + \dots + c_{p-q+1}b_{q}, \\ \vdots \\ 0 = c_{p+q} + c_{p+q-1}b_{1} + \dots + c_{p}b_{q}, \end{cases}$$

$$(3.14)$$

 $c_i$  is given in (2.3), and the following holds:

$$f(x) - [p/q]_f(x) = O\left(\frac{1}{x^{p+q+1}}\right), \quad x \to \infty.$$
 (3.15)

Moreover, we have

$$[p/q]_{f}(x) = \frac{\begin{vmatrix} \frac{1}{x^{q}} f_{p-q}(x) & \frac{1}{x^{q-1}} f_{p-q+1}(x) & \cdots & f_{p}(x) \\ c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p} & c_{p+1} & \cdots & c_{p+q} \end{vmatrix}}{\begin{vmatrix} \frac{1}{x^{q}} & \frac{1}{x^{q-1}} & \cdots & 1 \\ c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p} & c_{p+1} & \cdots & c_{p+q} \end{vmatrix}},$$

$$(3.16)$$

with  $f_n(x) = \sum_{j=0}^n \frac{c_j}{x^j}$ , the nth partial sum of the asymptotic series (3.7).

Remark 3.1 Using (3.16), we can also derive (3.9) and (3.11). Indeed, we have

$$[1/1]_f(x) = \frac{\begin{vmatrix} \frac{1}{x}f_0(x) & f_1(x) \\ c_1 & c_2 \end{vmatrix}}{\begin{vmatrix} \frac{1}{x} & 1 \\ c_1 & c_2 \end{vmatrix}} = \frac{\begin{vmatrix} \frac{1}{x} & 1 - \frac{1}{2x} \\ -\frac{1}{2} & \frac{11}{24} \end{vmatrix}}{\begin{vmatrix} \frac{1}{x} & 1 \\ -\frac{1}{2} & \frac{11}{24} \end{vmatrix}}$$
$$= \frac{x + \frac{5}{12}}{x + \frac{11}{12}}$$

and

$$[2/2]_{f}(x) = \frac{\begin{vmatrix} \frac{1}{x^{2}}f_{0}(x) & \frac{1}{x}f_{1}(x) & f_{2}(x) \\ c_{1} & c_{2} & c_{3} \\ c_{2} & c_{3} & c_{4} \end{vmatrix}}{\begin{vmatrix} \frac{1}{x^{2}} & \frac{1}{x} & 1 \\ c_{1} & c_{2} & c_{3} \\ c_{2} & c_{3} & c_{4} \end{vmatrix}} = \frac{\begin{vmatrix} \frac{1}{x^{2}} & \frac{1}{x}(1 - \frac{1}{2x}) & 1 - \frac{1}{2x} + \frac{11}{24x^{2}} \\ -\frac{1}{2} & \frac{11}{24} & -\frac{7}{16} & \frac{2,447}{5,760} \end{vmatrix}}{\begin{vmatrix} \frac{1}{x^{2}} & \frac{1}{x} & 1 \\ -\frac{1}{2} & \frac{11}{24} & -\frac{7}{16} & \frac{2,447}{5,760} \end{vmatrix}}$$
$$= \frac{x^{2} + \frac{87}{100}x + \frac{37}{240}}{x^{2} + \frac{137}{100}x + \frac{457}{1,200}}.$$

**Remark 3.2** Setting (p, q) = (k, k) in (3.15), we obtain (1.16).

Setting

$$(p,q) = (3,3)$$
 and  $(p,q) = (4,4)$ ,

respectively, we obtain by Theorem 3.1, as  $x \to \infty$ ,

$$\frac{1}{e}\left(1+\frac{1}{x}\right)^{x} = \frac{x^{3} + \frac{162,713}{121,212}x^{2} + \frac{13,927}{26,936}x + \frac{41,501}{786,240}}{x^{3} + \frac{223,319}{121,212}x^{2} + \frac{237,551}{242,424}x + \frac{3,950,767}{29,990,880}} + O\left(\frac{1}{x^{7}}\right)$$
(3.17)

and

$$\frac{1}{e} \left( 1 + \frac{1}{x} \right)^{x} = \frac{x^{4} + \frac{1,157,406,727}{634,301,284} x^{3} + \frac{8,452,872,239}{7,611,615,408} x^{2} + \frac{81,587,251,465}{319,687,847,136} x + \frac{15,842,677}{924,376,320}}{x^{4} + \frac{1,474,557,369}{634,301,284} x^{3} + \frac{13,811,559,391}{7,611,615,408} x^{2} + \frac{170,870,679,559}{319,687,847,136} x + \frac{1,724,393,461,793}{38,362,541,656,320}} + O\left(\frac{1}{x^{9}}\right).$$
(3.18)

Equations (3.17) and (3.18) motivate us to establish the following theorem.

**Theorem 3.2** For x > 0,

$$\left(1 + \frac{1}{x}\right)^{x} < e^{\left(\frac{x^{3} + \frac{162,713}{121,212}x^{2} + \frac{13,927}{26,936}x + \frac{41,501}{786,240}}{x^{3} + \frac{223,319}{121,212}x^{2} + \frac{237,551}{240,4024}x + \frac{3,950,767}{29,900,980}}\right)$$
(3.19)

and

$$\left(1 + \frac{1}{x}\right)^{x} < e^{\left(\frac{x^{4} + \frac{1,157,406,727}{634,301,284}x^{3} + \frac{8,452,872,239}{7,611,615,408}x^{2} + \frac{81,587,251,465}{319,687,847,136}x + \frac{15,842,677}{924,376,320}}{x^{4} + \frac{1,474,557,369}{634,301,284}x^{3} + \frac{13,811,559,391}{7,611,615,408}x^{2} + \frac{170,870,679,559}{319,687,847,136}x + \frac{1,724,393,461,793}{38,362,541,656,320}}\right).$$
(3.20)

*Proof* We only prove the inequality (3.20). The proof of (3.19) is analogous. In order to prove (3.20), it suffices to show that

$$F(x) < 0$$
 for  $x > 0$ ,

where

$$F(x) = x \ln\left(1 + \frac{1}{x}\right) - 1$$

$$-\ln\left(\frac{x^4 + \frac{1,157,406,727}{634,301,284}x^3 + \frac{8,452,872,239}{7,611,615,408}x^2 + \frac{81,587,251,465}{319,687,847,136}x + \frac{15,842,677}{924,376,320}}{x^4 + \frac{1,474,557,369}{634,301,284}x^3 + \frac{13,811,559,391}{7,611,615,408}x^2 + \frac{170,870,679,559}{319,687,847,136}x + \frac{1,724,393,461,793}{38,362,541,656,320}}\right).$$

Differentiation yields

$$F'(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{P_8(x)}{P_9(x)},$$

where

$$P_8(x) = 4,534,960,145,139,175,220,907,601 + 89,156,435,404,854,709,617,164,400x \\ + 753,611,422,427,554,143,580,166,880x^2 \\ + 3,400,732,641,706,885,239,015,784,320x^3 \\ + 8,959,898,009,119,992,740,647,591,680x^4 \\ + 14,212,846,466,921,911,377,490,790,400x^5 \\ + 13,355,464,865,044,929,241,744,281,600x^6 \\ + 6,842,437,276,900,714,847,214,796,800x^7 \\ + 1,471,684,602,332,887,248,995,942,400x^8$$

and

$$P_{9}(x) = (38,362,541,656,320x^{4} + 69,999,958,848,960x^{3} + 42,602,476,084,560x^{2} + 9,790,470,175,800x + 657,486,938,177)(38,362,541,656,320x^{4} + 89,181,229,677,120x^{3} + 69,610,259,330,640x^{2} + 20,504,481,547,080x + 1,724,393,461,793)(x + 1).$$

Differentiating F'(x), we find

$$F''(x) = -\frac{Q_8(x)}{Q_{19}(x)},$$

where

 $Q_8(x) = 1,285,425,745,031,439,744,924,351,944,181,267,498,830,297,392,321$ 

+28,378,097,964,665,213,870,448,253,775,917,974,735,833,555,915,520x

 $+247,639,239,538,550,650,618,428,925,475,351,177,418,903,828,519,360x^2$ 

 $+\ 1,\!131,\!116,\!309,\!072,\!948,\!249,\!686,\!419,\!776,\!599,\!013,\!563,\!965,\!352,\!036,\!853,\!760x^3$ 

 $+2,998,129,273,934,033,621,834,452,343,529,577,599,070,175,646,117,120x^4$ 

 $+4,775,194,702,079,256,668,486,950,292,217,012,539,098,845,384,867,840x^5$ 

 $+4,503,188,365,939,207,771,317,966,173,833,346,921,724,385,791,590,400x^6$ 

 $+2,315,562,242,935,704,170,341,114,308,201,588,127,064,283,807,744,000x^7$ 

 $+500,009,489,498,922,911,594,629,442,997,057,334,195,586,408,448,000x^8$ 

and

$$Q_{19}(x) = x (38,362,541,656,320x^4 + 69,999,958,848,960x^3 + 42,602,476,084,560x^2 + 9,790,470,175,800x + 657,486,938,177)^2 (38,362,541,656,320x^4 + 89,181,229,677,120x^3 + 69,610,259,330,640x^2 + 20,504,481,547,080x + 1,724,393,461,793)^2 (x + 1)^2.$$

Hence, F''(x) < 0 for x > 0, and we have

$$F'(x) > \lim_{t \to \infty} F'(t) = 0 \quad \Longrightarrow \quad F(x) < \lim_{t \to \infty} F(t) = 0 \quad \text{for } x > 0.$$

The proof is complete.

The inequality (3.20) can be written as

$$\left(1 + \frac{1}{x}\right)^x < e\left(1 - \mathcal{E}(x)\right), \quad x > 0,$$
(3.21)

where

$$\mathcal{E}(x) = 48(399,609,808,920x^3 + 562,662,150,960x^2 + 223,208,570,235x + 22,227,219,242)/(38,362,541,656,320x^4 + 89,181,229,677,120x^3 + 69,610,259,330,640x^2 + 20,504,481,547,080x + 1,724,393,461,793).$$
(3.22)

#### 4 A generalized Carleman-type inequality

**Theorem 4.1** Let  $0 < \lambda_{n+1} \le \lambda_n$ ,  $\Lambda_n = \sum_{m=1}^n \lambda_m$   $(\Lambda_n \ge 1)$ ,  $a_n \ge 0$   $(n \in \mathbb{N})$  and  $0 < \sum_{n=1}^{\infty} \lambda_n a_n < \infty$ . Then, for 0 ,

$$\sum_{n=1}^{\infty} \lambda_{n+1} \left( a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n} \right)^{1/\Lambda_n}$$

$$< \frac{e^p}{p} \sum_{n=1}^{\infty} \left( 1 - \mathcal{E} \left( \frac{\Lambda_n}{\lambda_n} \right) \right)^p \lambda_n a_n^p \Lambda_n^{p-1} \left( \sum_{k=1}^n \lambda_k (c_k a_k)^p \right)^{(1-p)/p}, \tag{4.1}$$

where  $\mathcal{E}(x)$  is given in (3.22) and

$$c_n^{\lambda_n} = \frac{(\Lambda_{n+1})^{\Lambda_n}}{(\Lambda_n)^{\Lambda_{n-1}}}.$$

**Proof** The inequality

$$\sum_{n=1}^{\infty} \lambda_{n+1} \left( a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n} \right)^{1/\Lambda_n}$$

$$\leq \frac{1}{p} \sum_{m=1}^{\infty} \left( 1 + \frac{1}{\Lambda_m / \lambda_m} \right)^{p\Lambda_m / \lambda_m} \lambda_m a_m^p \Lambda_m^{p-1} \left( \sum_{k=1}^m \lambda_k (c_k a_k)^p \right)^{(1-p)/p}$$

$$(4.2)$$

has been proved in Theorem 2.2 of [9] (see also [11, p.96]). From the above inequality and (3.20), we obtain (4.1). The proof is complete.

**Remark 4.1** In Theorem 2.2 of [9],  $c_k^{\lambda_n} = \frac{(\Lambda_{n+1})^{\Lambda_n}}{(\Lambda_n)^{\Lambda_{n-1}}}$  should be  $c_n^{\lambda_n} = \frac{(\Lambda_{n+1})^{\Lambda_n}}{(\Lambda_n)^{\Lambda_{n-1}}}$ ; see [9, p.44, line 3]. Likewise,  $c_s^{\lambda_n} = \frac{(\Lambda_{n+1})^{\Lambda_n}}{(\Lambda_n)^{\Lambda_{n-1}}}$  in Theorem 3.1 of [11] should be  $c_n^{\lambda_n} = \frac{(\Lambda_{n+1})^{\Lambda_n}}{(\Lambda_n)^{\Lambda_{n-1}}}$ ; see [11, p.96, equation (9)].

**Remark 4.2** Taking p = 1 in (4.1) yields

$$\sum_{n=1}^{\infty} \lambda_{n+1} \left( a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n} \right)^{1/\Lambda_n} < e \sum_{n=1}^{\infty} \left( 1 - \mathcal{E} \left( \frac{\Lambda_n}{\lambda_n} \right) \right) \lambda_n a_n, \tag{4.3}$$

which improves (1.6). Taking  $\lambda_n \equiv 1$  in (4.3) yields

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} (1 - \mathcal{E}(n)) a_n, \tag{4.4}$$

which improves (1.9).

#### Acknowledgements

The authors thank the referees for helpful comments.

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors read and approved the final manuscript.

#### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 June 2017 Accepted: 4 August 2017 Published online: 04 September 2017

#### References

- 1. Carleman, T: Sur les fonctions quasi-analytiques. In: Comptes rendus du  $V^e$  Congres des Mathematiciens Scandinaves. Helsingfors, pp. 181-196 (1922)
- 2. Hardy, GH: Notes on some points in the integral calculus. Messenger Math. 54, 150-156 (1925)
- 3. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)
- 4. Čižmešija, A, Pečarić, J, Persson, LE: On strengthened Carleman's inequality. Bull. Aust. Math. Soc. 68, 481-490 (2003)
- 5. Chen, HW: On an infinite series for  $(1 + 1/x)^x$  and its application. Int. J. Math. Math. Sci. 29, 675-680 (2002)
- 6. Chen, CP: Generalization of weighted Carleman-type inequality. East J. Approx. 12, 63-69 (2006)
- 7. Chen, CP, Qi, F: Generalization of Hardy's inequality. Proc. Jangjeon Math. Soc. 7, 57-61 (2004)
- 8. Chen, CP, Cheung, WS, Qi, F: Note on weighted Carleman type inequality. Int. J. Math. Math. Sci. 3, 475-481 (2005)
- 9. Dragomir, SS, Kim, YH: The strengthened Hardy inequalities and their new generalizations. Filomat 20, 39-49 (2006)
- 10. Hu, Y: A strengthened Carleman's inequality. Commun. Math. Anal. 1, 115-119 (2006)
- 11. Lü, Z, Gao, Y, Wei, Y: Note on the Carleman's inequality and Hardy's inequality. Comput. Math. Appl. **59**, 94-97 (2010)
- 12. Li, JL: Notes on an inequality involving the constant e. J. Math. Anal. Appl. 250, 722-725 (2000)
- Liu, HP, Zhu, L: New strengthened Carleman's inequality and Hardy's inequality. J. Inequal. Appl. 2007, Article ID 84104 (2007). http://link.springer.com/article/10.1155/2007/84104/fulltext.html
- Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman's inequality. Carpath. J. Math. 31, 249-254 (2015)
- 15. Xie, Z, Zhong, Y: A best approximation for constant *e* and an improvement to Hardy's inequality. J. Math. Anal. Appl. **252**, 994-998 (2000)
- 16. Yan, P. Sun, GZ: A strengthened Carleman's inequality. J. Math. Anal. Appl. 240, 290-293 (1999)
- 17. Yang, BC, Debnath, L: Some inequalities involving the constant *e*, and an application to Carleman's inequality. J. Math. Anal. Appl. **223**, 347-353 (1998)
- 18. Yang, BC: On Hardy's inequality. J. Math. Anal. Appl. 234, 717-722 (1999)
- 19. Yang, XJ: On Carleman's inequality. J. Math. Anal. Appl. 253, 691-694 (2001)
- 20. Yang, XJ: Approximations for constant e and their applications. J. Math. Anal. Appl. 262, 651-659 (2001)
- 21. Johansson, M, Persson, LE, Wedestig, A: Carleman's inequality history, proofs and some new generalizations. J. Inequal. Pure Appl. Math. 4(3), Article ID 53 (2003). http://jipam.vu.edu.au/article.php?sid=291
- 22. Kaijser, S, Persson, LE, Öberg, A: On Carleman and Knopp's inequalities. J. Approx. Theory 117, 140-151 (2002)
- 23. Kufner, A, Persson, LE: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)
- 24. Pečarić, J, Stolarsky, KB: Carleman's inequality: history and new generalizations. Aequ. Math. 61, 49-62 (2001)
- 25. Pólya, G: Proof of an inequality. Proc. Lond. Math. Soc. 24, 57 (1926)
- 26. Wikipedia contributors: Partition (number theory), Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Partition\_function\_(number\_theory)#Partition\_function
- 27. Sloane, NJA: a(n) = number of partitions of n (the partition numbers). Maintained by The OEIS Foundation. http://oeis.org/A000041
- 28. Chen, CP, Choi, J: Asymptotic formula for  $(1 + 1/x)^x$  based on the partition function. Am. Math. Mon. 121, 338-343 (2014)
- 29. Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. **2016** 99 (2016). http://www.doc88.com/p-0037658479714.html
- 30. Bercu, G: The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 11, 181-191 (2017)
- Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci. Appl. 9, 5011-5020 (2016)
- 32. Brezinski, C, Redivo-Zaglia, M: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69-77 (2015)
- 33. Li, X, Chen, CP: Padé approximant related to asymptotics for the gamma function. J. Inequal. Appl. **2017**, 53 (2017). http://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-017-1315-1
- Liu, J, Chen, CP: Padé approximant related to inequalities for Gauss lemniscate functions. J. Inequal. Appl. 2016, 320 (2016). http://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-016-1262-2

## Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com