
Zhang and Zheng Journal of Inequalities and Applications  (2015) 2015:169 
DOI 10.1186/s13660-015-0686-4

R E S E A R C H Open Access

On refined Hardy-Knopp type inequalities
in Orlicz spaces and some related results
Jinjie Zhang and Shenzhou Zheng*

*Correspondence:
shzhzheng@bjtu.edu.cn
Department of Mathematics, Beijing
Jiaotong University, Beijing, 100044,
China

Abstract
In this paper, we construct a new integral operator T (r)k which generalizes the classical
Hardy-Knopp type integral operator Ak by considering the power mean of the
non-negative measurable functions. We state and prove a new refined Hardy-Knopp
type inequality related to the weighted Lebesgue spaces. As a special case of our
results, the refinements of multidimensional Hardy-Knopp type inequalities are
obtained. Finally, we also apply a similar idea to prove some new norm inequalities in
Orlicz spaces in which the properties of N-functions and superquadratic functions are
involved.
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1 Introduction
It is well known that the classical Hardy inequality in [] reads

∫ ∞



(

x

∫ x


f (t) dt

)p

dx ≤
(

p
p – 

)p ∫ ∞


f p(x) dx, (.)

for any f ∈ Lp(R+) with  < p < ∞; the constant ( p
p– )p is the best possible. After that, the

inequality has been tremendously studied and applied in an almost unbelievable way. By
replacing f with f


p and letting p → ∞ in (.), we obtain the limiting case which is referred

to as Knopp’s inequality:

∫ ∞


exp

(

x

∫ x


ln f (t) dt

)
dx ≤ e

∫ ∞


f (x) dx, (.)

for all positive functions f ∈ L(R+). Another important classical Hardy-Hilbert inequality
is closely associated with (.):

∫ ∞



(∫ ∞



f (x)
x + y

dx
)p

dy ≤
(

π

sin( π
p )

)p ∫ ∞


f p(x) dx. (.)

As we know, since the above inequalities (.), (.), and (.) were established, they have
been developed and generalized in different directions; see [–]. It should be particularly
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emphasized that the above inequalities are various special cases of the following Hardy-
Knopp type inequality, which was pointed out by Oguntuase et al. in [] and Kaijser et al.
in []:

∫ ∞


�

(

x

∫ x


f (t) dt

)
dx
x

≤
∫ ∞


�

(
f (x)

)dx
x

, (.)

where � is a convex function on (,∞). Note that the above inequality (.) can be proved
by using Jensen’s inequality and Fubini’s theorem, whose idea comes from those papers
[–].

Recently, Krulić et al. [] unified the all above results in an abstract way by introducing
the Hardy-Knopp type integral operator Ak in the measure space. Let (�,�,μ) and
(�,�,μ) be measure spaces with positive σ -finite measures, respectively. Suppose that
u : � →R and k : � × � →R are two non-negative measurable functions with

K(x) :=
∫

�

k(x, y) dμ(y) < ∞, x ∈ �. (.)

If f is a real-valued measurable function defined on �, the general Hardy-Knopp type
operator Ak is defined by

Akf (x) :=


K(x)

∫
�

k(x, y)f (y) dμ(y), x ∈ �. (.)

Then we have the following modular Hardy type inequality in []: for  < p ≤ q < ∞ and
any measurable functions f : � →R such that f (�) ⊆ I we have

(∫
�

u(x)�
q
p
(
Akf (x)

)
dμ(x)

) 
q

≤
(∫

�

v(y)�
(
f (y)

)
dμ(y)

) 
p

, (.)

where � is a non-negative convex function defined on a convex set I ⊆R and

v(y) =
[∫

�

u(x)
(

k(x, y)
K(x)

) q
p

dμ(y)
] p

q
, y ∈ �. (.)

In addition, Čižmešija et al. [] obtained a class of new sufficient conditions for a
weighted modular inequality involving the above operator Ak , so that they refined the
classical Godunova inequality. Adeleke et al. [] generalized the classical Hardy-Knopp
type inequality to the class of arbitrary non-negative functions bounded from below and
above with a convex function multiplied by positive real constants.

Motivated by the idea from [, , –], in this paper we will establish a generalized
Hardy-Knopp type inequality by introducing a new integral operator T (r)

k as follows: for a
non-negative measurable function f defined on � and a real number r > , let

T (r)
k f (x) :=

(


K(x)

∫
�

k(x, y)f r(y) dμ(y)
) 

r
, x ∈ �. (.)

Then we will attain a strengthened Hardy-Knopp type inequality which includes all the
above results, so as to give a refined version with multidimensional form as corollary.
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Moreover, some new norm inequalities in Orlicz spaces are established. The assertion
that the Orlicz norm ‖Akf ‖�(u) is bounded by a constant K if the N-function � satisfies the
�-condition is proved. Additionally, under the assumption that the composition of two
N-functions � ◦�–

 is also an N-function, we prove a new norm inequality ‖Akf ‖�(u) ≤
C‖f ‖�(u) which may characterize the Hardy-Knopp operators in abstract spaces. Further,
we obtain the upper bound of the operator norm ‖Ak‖∗ which implies the continuity of
the Hardy-Knopp operator between two different Orlicz spaces. This conclusion is also
applied to some useful examples.

The paper is organized as follows. To make the proofs as self-contained as possible,
some notations of Orlicz spaces and superquadratic functions are stated in Section  and
we also present some preliminaries. In Section , we prove the generalized Hardy-Knopp
type inequalities as regards the operator Tr

k and derive the corresponding conclusions
in a multidimensional form. The norm inequalities in Orlicz spaces are formulated and
discussed in Section .

2 Preliminaries
Throughout this paper, all measures are assumed to be positive and all functions are as-
sumed to be measurable. For a real parameter p > , we denote its conjugate exponent by
p′ and p′ = p

p– , that is, 
p + 

p′ = . Moreover, by a weight function we mean a non-negative
measurable function on the actual interval or more general set.

Before stating and proving the related norm inequality on the integral operator Ak in
Orlicz spaces, let us first describe some properties of the �-condition and superquadratic
functions involved later. We know that the seminal textbook by Krasnosel’skii et al. []
contains all the fundamental properties about Orlicz spaces. More recently, the textbooks
by Rao and Ren [] or by Adams and Fournier [] were concerned with very general
situations including the possible pathologies of Young’s functions and the concept of the
Orlicz-Sobolev space. Following the notations in [, ], we use the class of ‘N-functions’
as defining functions � for Orlicz spaces. This class is not as wide as the class of Young’s
functions used in []. However, N-functions are simpler to deal with and are adequate
for our purpose. First, we recall the concepts of an N-function and its complement (see
[, ] for details).

Definition . A real-valued function �(x) =
∫ x

 φ(t) dt is called an N-function if φ is a
real-valued function defined on [,∞) and satisfies the following conditions:

(a) φ() = , φ(t) >  whenever t > , limt→∞ φ(t) = ∞;
(b) φ(t) is non-decreasing;
(c) φ(t) is right continuous.

Definition . Given any φ with the assumptions (a)-(c) above, we let φ–(s) := sup{t >  :
φ(t) ≤ s} be a right continuous inverse function of φ. Denoting

	(x) =
∫ x


φ–(s) ds, (.)

then 	(x) is called the complementary function of �(x). Note that it is an N-function
itself.
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Definition . An N-function � is said to satisfy the �-condition (globally) if there is a
positive constant C such that

�(t) ≤ C�(t) for all t ∈R+. (.)

Next, we recall the concept of the Orlicz space L�(u); see [] for details.

Definition . Let u(x) be a weight function and �(x) be an N-function on a σ -finite
measure space (�,�,μ). The Orlicz space L�(u) consists of all non-negative measurable
functions f (module equivalent almost everywhere) with

(a) the Luxemburg norm

‖f ‖�(u) := inf

{
λ >  :

∫
�

�

(
f (x)
λ

)
u(x) dμ(x) ≤ 

}
< +∞.

(b) The Orlicz norm

‖f ‖′
�(u) := sup

{∫
�

f (x)g(x)u(x) dμ(x) :
∫

�

	
(
g(x)

)
u(x) dμ(x) ≤ 

}
< +∞,

where 	 is the complementary function of �.

Now, we give some basic properties of the Orlicz space L�(u) (cf. []), which will be used
to prove our main results.

Proposition . Let � be an N-function with �() = . Then
(a) �(αx) ≤ α�(x) for  ≤ α ≤ .
(b) α�(x) ≤ �(αx) for  ≤ α < ∞.
(c) For any measurable function f ≥ , ‖f ‖�(u) ≤  if and only if∫

�
�(f (x))u(x) dμ(x) ≤ .

Proposition . Let � be an N-function and 	 be the complementary of �. Then we have
(a) L� is a Banach space such that the Luxemburg and Orlicz norms are equivalent;

indeed,

‖f ‖�(u) ≤ ‖f ‖′
�(u) ≤ ‖f ‖�(u). (.)

(b) Hölder’s inequality:

∫
�

f (x)g(x)u(x) dμ(x) ≤ ‖f ‖�(u)‖g‖′
	(u). (.)

(c) If an N-function satisfies the �-condition, then there are constants α and β with
 ≤ β ≤ α < ∞ such that sβ�(t) ≤ �(st) ≤ sα�(t) when s ≥  and t ≥ , and
sα�(t) ≤ �(st) ≤ sβ�(t) when  ≤ s ≤  and t ≥ .

In fact, the verification of propositions above can be found in pp.- in [] and
pp.- in []. Another main tool in the proofs is to use superquadratic functions and a
generalization of Jensen’s inequality given by Abramovich et al. in [].
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Definition . A function f : [,∞) → R is superquadratic provided that for each x ≥ 
there exists a constant Cx ∈R such that

f (y) – f (x) – f
(|y – x|) ≥ Cx(y – x), ∀y ≥ . (.)

Lemma . A function φ : [,∞] → R is continuously differentiable and φ() ≤ . If φ′ is
superadditive or φ′(x)

x is non-decreasing, then φ is superquadratic.

Lemma . (Refinement of Jensen’s inequality) Let (�,μ) be a probability measure space.
The inequality

φ

(∫
�

f (s) dμ(s)
)

≤
∫

�

φ
(
f (s)

)
dμ(s) –

∫
�

φ

(∣∣∣∣f (s) –
∫

�

f (s) dμ(s)
∣∣∣∣
)

dμ(s) (.)

holds for all probability measures μ and all non-negative μ-integrable functions f if and
only if φ is superquadratic.

For convenience later, we also recall the following convexity concepts and Jensen’s in-
equalities in n dimensional variables; see [] for details.

Definition . A function � : D → R for which D is a convex set of Rn is said to be
convex on D if for all x ∈R

n, y ∈R
n and λ ∈ [, ] we have

�
(
λx + ( – λ)y

) ≤ λ�(x) + ( – λ)�(y). (.)

Lemma . Let D ⊆R
n be convex and open, φ : D →R be twice differentiable. Then φ is

convex on D if and only if its Hessian matrix ( ∂f
∂xi ∂yj

(x))n×n is positive semi-definite for all
x ∈ D ⊂R

n.

Lemma . (n-variable Jensen’s inequality) Let p(x) be a non-negative continuous func-
tion on I = [a, b] ⊆R such that

∫
I p(t) dt > . If fi : I → [mi, Mi] is a real-valued continuous

function for each i ∈ , , . . . , n on [a, b] and � is convex on �n =
∏n

i=[mi, Mi] ⊆ R
n, then

we have

�

(∫
I f(t)p(t) dt∫

I p(t) dt
, . . . ,

∫
I fn(t)p(t) dt∫

I p(t) dt

)
≤

∫
I �(f(t), . . . , fn(t))p(t) dt∫

I p(t) dt
. (.)

Remark . The Orlicz spaces really extend the usual Lp spaces. In fact, the function
�(x) = xp entering the definition of Lp is replaced by a more general convex N-function
�(x). The Propositions . and . are crucial for the proofs of the norm inequalities in
Orlicz space. The concepts of a superquadratic function and Jensen’s inequality in n vari-
ables are used to prove the generalized Hardy-Knopp type inequalities.

3 Generalizations for Hardy-Knopp type operators in weighted Lebesgue
spaces

Our analysis starts with a powerful sufficient condition for a new inequality related to
the operator T (r)

k . As its conclusion, a new norm inequality in weighted Lebesgue space is
obtained. Now, we point out the monotonicity of T (r)

k (x) on r when x is fixed.
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Lemma . Fix x ∈ � and define M(r) = T (r)
k f (x) for each r > , then the function M :

R
+ → [,∞) is non-decreasing.

Proof (I) First the case of  < r < . Let p = 
r . By Hölder’s inequality we have

T (r)
k f (x) =

(


K(x)

∫
�

k(x, y)f

p (y) dμ(y)

)p

≤ 
Kp(x)

(∫
�

k(x, y)f (y) dμ(y)
)(∫

�

k(x, y) dμ(y)
) p

p′
= T ()

k f (x).

Therefore, for any  < s < s ≤  let r = s
s

< . Then, by replacing f with f s one deduces
M(s) ≤ M(s) ≤ M().

(II) Next the case of r > . Since

T (r)
k f (x) =


K(x)

(∫
�

k(x, y)f r(y) dμ(y)
) 

r
(∫

�

k(x, y) dμ(y)
) 

r′

≥ 
K(x)

∫
�

k(x, y)f (y) dμ(y) = T ()
k f (x),

similar to the case above, one gets M() ≤ M(r) ≤ M(r) for any  ≤ r < r. This completes
the proof. �

Theorem . For  < β ≤ q,  < p ≤ β , and  < r ≤ , let (�,�,μ) and (�,�,μ) be
measure spaces with positive σ -finite measures, u be a positive weight function on �, v be a
positive weight function on � and k : � ×� →R be a non-negative measurable function.
Suppose that K : � →R is as in (.) so that the function x → u(x)( k(x,y)

K (x) )q is integrable on
� for each fixed y ∈ �. Assume � is a non-negative increasing convex function on an
interval I ⊆ [,∞) and there is a positive measurable function w : � → R such that

Cw(β) = Dw(β) sup
y∈�

w

β′ (y)

(∫
�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) 

q
< ∞,

where

Dw(β) =
(∫

�

v– β′
p (y)w–(y) dμ(y)

) 
β′

.

Then the following inequality:

∥∥�
(
T (r)

k f
)∥∥

Lq
u(�,μ) ≤ Cw(β)

∥∥�(f )v
β
p –∥∥

Lβ
v (�,μ) (.)

is valid for all measurable functions f : � → I ⊆R and T (r)
k is defined by (.).

Proof Denote g(y) = v(y)�p(f (y)), then �(f (y)) = g

p (y)v– 

p (y). First, by Hölder’s inequality,
we have the following estimate:
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(∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)q

=
(∫

�

k(x, y)g

p (y)v– 

p (y)w

β

–(y)w– 
β (y) dμ(y)

)q

≤
(∫

�

kβ (x, y)g
β
p (y)wβ–(y) dμ(y)

) q
β
(∫

�

v– β′
p (y)w–(y) dμ(y)

) q
β′

= Dq
w(β)

(∫
�

kβ (x, y)g
β
p (y)wβ–(y) dμ(y)

) q
β

. (.)

Notice that T (r)
k f (x) ∈ I , x ∈ � and inequality (.). Applying Jensen’s inequality,

Minkowski’s inequality as well as monotonicity of the convex function �(x) on I and
M(r) on (,∞), by Lemma . for any measurable function f : � → I we get a series of
inequalities:

(∫
�

u(x)�q(T (r)
k f (x)

)
dμ(x)

) 
q

≤
(∫

�

u(x)�q(T ()
k f (x)

)
dμ(x)

) 
q

≤
[∫

�

u(x)
Kq(x)

(∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)q

dμ(x)
] 

q

≤ Dw(β)
[∫

�

u(x)
Kq(x)

(∫
�

kβ (x, y)g
β
p (y)wβ–(y) dμ(y)

) q
β

dμ(x)
] 

q

≤ Dw(β)
[∫

�

g
β
p (y)w

β

β′ (y)
(∫

�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) β

q
dμ(y)

] 
β

≤ Cw(β)
(∫

�

v
β
p (y)�β

(
f (y)

)
dμ(y)

) 
β

. (.)

Immediately, it yields (.) from (.). �

Remark . Suppose that the weight function v is defined by

v(y) =
(∫

�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) 

q
< ∞ for each y ∈ �

in Theorem .. Then we can proceed to the inequalities (.) in the following way:

(∫
�

u(x)�q(T (r)
k f (x)

)
dμ(x)

) 
q

≤
(∫

�

u(x)�q(T ()
k f (x)

)
dμ(x)

) 
q

≤
(∫

�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)q

dμ(x)
) 

q

=
[∫

�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)q

dμ(x)
] 

q
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≤
∫

�

�
(
f (y)

)[∫
�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
] 

q
dμ(y)

≤
∫

�

v(y)�
(
f (y)

)
dμ(y), (.)

where q ≥ . Let r =  and replace q with p
q in (.); we also get the modular Hardy type

inequality (.).

Remark . If K is the best possible constant in (.), then

K ≤ inf
<β≤q,w>

Cw(β).

Theorem . is our main result in the first part of Section . Enlightened by the work
of Lour [], we will derive a series of examples based on it, including several averaging
operators and integral transforms in the weighted Lebesgue spaces. Before stating their
descriptions we need to give some notations.

First, for x = (x, . . . , xn) ∈ R
n
+ and y = (y, . . . , yn) ∈ R

n
+ we denote y

x = ( y
x

, . . . , yn
xn

), xy =
x

y · · ·xn
yn ; in particular, x =

∏n
i= xi. Additionally, let S = {x ∈ R

n : |x| = } be the unit
sphere in R

n with the standard Euclidean norm |x| of x, and E ⊆ R
n be a spherical cone

with E = {x ∈R
n : x = rb,  < r < ∞, b ∈ A} for any measurable subset A of S. Suppose that

� = � = E in Theorem ., dμ(x) = dx, and dμ(y) = dy. For all non-negative functions
f on E, we list the following examples with the averaging integral operators.

Example . (Averaging operator of Laplace type) Consider the case that k(x, y) =
|x|ne–|x||y|,  < β = p ≤ q, r = , and w(y) ≡ . Then we have K(x) =

∫
E k(x, y) dy = |A|(n – )!,

and consequently

Lf (x) = Akf (x) =
|x|n

|A|(n – )!

∫
E

e–|x||y|f (y) dy

as an averaging operator of Laplace type. According to Theorem . it follows that

∥∥�(Lf )
∥∥

Lq
u(�,μ) ≤ C

∥∥�(f )
∥∥

Lp
v (�,μ),

for any non-negative measurable functions f : E → I , where

C =
(∫

�

v– p′
p (y) dμ(y)

) 
p′

sup
y∈�

(∫
�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) 

q
< ∞.

Example . (Averaging operator of Stieltjes type) Consider the case that k(x, y) = (|x| +
|y|)–ρ (ρ > ),  < β = p ≤ q, r = , and w(y) ≡ . Then we have K(x) =

∫
E k(x, y) dy =

|A|B(ρ – n, n)|x|–ρ+n with a Beta function B(·, ·), and consequently

Sf (x) = Akf (x) =
|x|ρ–n

|A|B(ρ – n, n)

∫
E

f (y)
(|x| + |y|)ρ dy

as an averaging operator of Stieltjes type. By Theorem . we obtain

∥∥�(Sf )
∥∥

Lq
u(�,μ) ≤ C

∥∥�(f )
∥∥

Lp
v (�,μ)
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with any non-negative measurable functions f : E → I , where

C =
(∫

�

v– p′
p (y) dμ(y)

) 
p′

sup
y∈�

(∫
�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) 

q
< ∞.

Example . (Averaging operator of Lambert type) Finally, consider the case that k(x, y) =
|y|(e|x||y| – )–,  < β = p ≤ q, r = , and w(y) ≡ . Then we attain K(x) =

∫
E k(x, y) dy =

|A|l|x|–n– with lr =
∫ ∞

 tr+n–(et – )–r dt, r > , and consequently

Ff (x) = Akf (x) =
|x|n+

|A|l

∫
E

|y|
e|x||y| – 

f (y) dy

as an averaging operator of Stieltjes type. In terms of Theorem . we deduce

∥∥�(Ff )
∥∥

Lq
u(�,μ) ≤ C

∥∥�(f )
∥∥

Lp
v (�,μ),

where f : E → I is a non-negative measurable function, and

C =
(∫

�

v– p′
p (y) dμ(y)

) 
p′

sup
y∈�

(∫
�

u(x)
(

k(x, y)
K(x)

)q

dμ(x)
) 

q
< ∞.

Indeed, the above conclusions can be reformulated with particular convex functions
such as power or exponential functions, especially with the N-function � =

∫ x
 φ(t) dt.

This leads to multidimensional analogs of corollaries and examples by way of the previous
theorems.

Now, we are in the position to consider the superquadratic function �. On the basis
of a refinement of Jensen’s inequality (.), we can refine the inequality (.) above with
respect to the operator Ak . Therefore, we get the following theorem as the second part of
this section.

Theorem . Let t ∈ [,∞), (�,�,μ), and (�,�,μ) be measure spaces with pos-
itive σ -finite measures, u be a weight function on �, and k : � × � → R be a non-
negative measurable function. Suppose that K : � → R is as in (.), that the function
x → u(x)( k(x,y)

K (x) )t is integrable on � for each fixed y ∈ �, and that the weight function v is
defined by

v(y) =
(∫

�

u(x)
(

k(x, y)
K(x)

)t

dμ(x)
) 

t
< ∞, y ∈ �.

If � is a non-negative superquadratic function on an interval I ⊆ [,∞), then we have

∫
�

u(x)�t(Akf (x)
)

dμ(x)

+ t
∫

�

u(x)
K(x)

�t–(Akf (x)
)(∫

�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)
)

dμ(x)

≤
(∫

�

v(y)�
(
f (y)

)
dμ(y)

)t

, (.)
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for any non-negative measurable functions f : � → I ⊆ R, where Akf defined on � by
(.).

Proof According to Lemma . it yields

�
(
Akf (x)

)
+


K(x)

∫
�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)

≤ 
K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y).

As a consequence of Bernoulli’s inequality, we derive

�t(Akf (x)
)

+ t
�t–(Akf (x))

K(x)

∫
�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)

≤
(

�
(
Akf (x)

)
+


K(x)

∫
�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)
)t

≤
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)t

. (.)

Multiplying (.) by u(x) and integrating it over �, by Minkowski’s inequality, it follows
that

∫
�

u(x)�t(Akf (x)
)

dμ(x)

+ t
∫

�

u(x)
K(x)

�t–(Akf (x)
)(∫

�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)
)

dμ(x)

≤
∫

�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)t

dμ(x)

=
{[∫

�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)t

dμ(x)
] 

t
}t

≤
{∫

�

�
(
f (y)

)[∫
�

u(x)
(

k(x, y)
K(x)

)t

dμ(x)
] 

t
dμ(y)

}t

=
(∫

�

v(y)�
(
f (y)

)
dμ(y)

)t

. (.)

So, the inequality (.) follows from (.). �

Remark . Observe that for t =  the inequality (.) may result from Theorem . in
[]. Moreover, the above conclusions can be rewritten by a special convex functions such
as a power function, an exponential function, and an N-function � =

∫ x
 φ(t) dt with a

continuous function φ such that φ(t)
t is non-decreasing or φ(t) is superadditive on [,∞),

since the N-function � is a superquadratic function by Lemma ..

Let � = � = R
n
+, dμ(x) = dx, dμ(y) = dy, and the kernel k in (.) be as the form

k(x, y) = h( y
x ), where h : Rn

+ → R is a non-negative measurable function. If u(x) and v(y)
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are substituted by u(x)
x and w(y)

y , recall that x =
∏n

 xi above, and by Theorem . we have
the following corollary.

Corollary . Let t ∈ [,∞), and u be a weight function on R
n
+ such that H(x) =

x ∫
R

n
+

h(y) dy satisfies  < H(x) < ∞ for all x ∈R
n
+ and that the function x → u(x)(

y
x

H(x) )t is
integrable on R

n
+ for each fixed y ∈R

n
+. The weight function w is defined by

w(y) = y
(∫

R
n
+

u(x)
( h( y

x )
H(x)

)t dx
x

) 
t
.

If � is a non-negative increasing superquadratic function on an interval I ⊆ [,∞), then
we have the following inequality:

∫
R

n
+

u(x)�t(Akf (x)
)dx

x

+ t
∫

�

u(x)
H(x)x �t–(Akf (x)

)(∫
�

h
(

y
x

)
�

(∣∣f (y) – Akf (x)
∣∣)dμ(y)

)
dμ(x)

≤
(∫

R
n
+

w(y)�
(
f (y)

)dy
y

)t

(.)

with any non-negative measurable functions f : Rn
+ → R with values in I and Akf as in

(.).

In virtue of the above corollary, one can deduce a generalization of Godunova’s inequal-
ity in []. The following result is based on Lemma . and its proof is similar to the proof
of Theorem . above.

Theorem . Suppose that t ∈ [,∞), I = [a, b] ⊆ R, I = [c, d] ⊆ R, and p(x) is as in
Lemma .. Let u be a weight function on I, k : I × I →R be a non-negative measurable
function, K(x) =

∫
I

k(x, y)d(y) > , x ∈ I, the function x → u(x)( k(x,y)
K (x) )t be integrable on I

for each fixed y ∈ I, and the weight function v be defined by

v(y) =
(∫

I

u(x)
(

k(x, y)
K(x)

)t

dx
) 

t
< ∞, y ∈ I.

If � is a non-negative convex function on �n =
∏n

i=[mi, Mi] ⊆R
n, then we have

∫
I

u(x)�t
(∫

I
f(y)k(x, y) dy∫
I

k(x, y) dy
, . . . ,

∫
I

fn(y)k(x, y) dy∫
I

k(x, y) dy

)
dx

≤
(∫

I

v(y)�
(
f(y), . . . , fn(y)

)
dy

)t

(.)

with any non-negative measurable functions fi : I → [mi, Mi]. Further, inequality (.)
holds in the reversed direction if � is a non-negative concave function and t ∈ (, ].
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Proof By using Lemma ., Minkowski’s inequality, and Fubini’s theorem, we observe
that

∫
I

u(x)�t
(∫

I
f(y)k(x, y) dy∫
I

k(x, y) dy
, . . . ,

∫
I

fn(y)k(x, y) dy∫
I

k(x, y) dy

)
dx

≤
∫

I

u(x)
(


K(x)

∫
I

k(x, y)�
(
f(y), . . . , fn(y)

)
dy

)t

dx

=
{[∫

I

u(x)
(


K(x)

∫
I

k(x, y)�
(
f(y), . . . , fn(y)

)
dy

)t

dx
] 

t
}t

≤
{∫

I

�
(
f(y), . . . , fn(y)

)[∫
I

u(x)
(

k(x, y)
K(x)

)t

dx
] 

t
dy

}t

≤
(∫

I

v(y)�
(
f(y), . . . , fn(y)

)
dy

)t

. (.)

Note that if � is a non-negative concave function and t ∈ (, ], it is completed by re-
versing the inequality sign in (.). �

In the process of proving Theorem ., assume that � : H → R is a twice differentiable
function on an open convex set H which contains the compact set �n =

∏n
i=[mi, Mi] such

that its Hessian matrix ( ∂f
∂xi ∂yj

(x))n×n is positive semi-definite for all x ∈R
n. Then accord-

ing to Lemma . � is a convex function on H and inequality (.) holds for any non-
negative measurable functions fi : I → [mi, Mi]. As a special case, the following corollary
is derived.

Corollary . Under the same conditions as Theorem ., let �(x, x, . . . , xn) = xT Ax be
a quadratic form in n independent variables, with associated symmetric matrix A which
is positive semi-definite. Then we have the following inequality:

∫
I

u(x)
(
xT Ax

)t dx ≤
(∫

I

v(y)yT Ay dy
)t

, (.)

for any non-negative measurable functions fi : I → R, where

x =
(∫

I
f(y)k(x, y) dy∫
I

k(x, y) dy
, . . . ,

∫
I

fn(y)k(x, y) dy∫
I

k(x, y) dy

)
and y =

(
f(y), . . . , fn(y)

)
.

Reversely, the inequality (.) holds in the reversed direction if A is a negative semi-definite
and t ∈ (, ].

4 The norm inequalities in Orlicz spaces
In this section, by combining some basic properties of Orlicz spaces and the arguments of
the preceding sections, we establish some new norm inequalities which may characterize
the Hardy-Knopp type operators in abstract spaces.

Theorem . Suppose that (�,�,μ) and (�,�,μ), u(x), k(x, y), and K(x) are as in
Theorem .. Let the function x → u(x)k(x,y)

K (x) be an integrable function on � for each fixed
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y ∈ �, and the weight function ω be defined by

ω(y) =
∫

�

u(x)k(x, y)
K(x)

dμ(x) < ∞, y ∈ �.

If � is a N-function satisfying the �-condition, then there are constants α and β with
 ≤ β ≤ α < ∞ such that the following norm inequality holds:

‖Akf ‖�(u) ≤ M

α

f , if Mf < ; or ‖Akf ‖�(u) ≤ M

β

f , if Mf ≥ ;

for any non-negative measurable functions f : � → [,∞), where

Mf =
∫

�

ω(y)�
(
f (y)

)
dμ(y)

and Akf is defined on � by (.).
Moreover, if φ(t) is a continuous function such that φ(t)

t is non-decreasing or φ(t) is su-
peradditive on [,∞), then the following refined normal inequality holds:

‖Akf ‖�(u) ≤ N

α

f , if Nf < ; or ‖Akf ‖�(u) ≤ N

β

f , if Nf ≥ ;

for all non-negative measurable functions f : � → [,∞), where

Nf =
∫

�

ω(y)�
(
f (y)

)
dμ(y) –

∫
�×�

u(x)
k(x, y)
K(x)

�
(∣∣f (y) – Akf (x)

∣∣)dμ(x) × dμ(y)

and Akf is defined on � by (.).

Proof By Proposition ., there are constants α and β with  ≤ β ≤ α < ∞ such that
sβ�(t) ≤ �(st) ≤ sα�(t) when s ≥  and t ≥ , and sα�(t) ≤ �(st) ≤ sβ�(t) when  ≤ s ≤ 
and t ≥ .

Case I. If λ ≤ , let s = 
λ

. Then it follows that

∫
�

u(x)�
(

Akf (x)
λ

)
dμ(x) ≤

(

λ

)α ∫
�

u(x)�
(
Akf (x)

)
dμ(x)

≤
(


λ

)α ∫
�

(∫
�

u(x)k(x, y)
K(x)

�
(
f (y)

)
dμ(y)

)
dμ(x)

=
(


λ

)α ∫
�

�
(
f (y)

)[∫
�

u(x)
(

k(x, y)
K(x)

)
dμ(x)

]
dμ(y)

=
(


λ

)α ∫
�

�
(
f (y)

)
ω(y) dμ(y) =

(

λ

)α

Mf . (.)

Case II. If λ > , let s = 
λ

. Similarly to (.), we can get

∫
�

u(x)�
(

Akf (x)
λ

)
dμ(x) ≤

(

λ

)β ∫
�

�
(
f (y)

)
ω(y) dμ(y) =

(

λ

)β

Mf . (.)
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First, we consider the case of Mf < , by letting λ =  in (.) then we have ‖Akf ‖�(u) ≤ .

Hence, it is sufficient to consider the case that λ ≤ . If λ ≥ M

α

f then

∫
�

u(x)�
(

Akf (x)
λ

)
dμ(x) ≤ 

due to inequality (.). Consequently, ‖Akf ‖�(u) ≤ M

α

f <  by the definition of the
Luxemburg norm. Now, we are in a position to consider another case of Mf ≥ . If

‖Akf ‖�(u) ≥ , we have the norm inequality ‖Akf ‖�(u) ≤ M

β

f due to inequality (.). There-

fore, ‖Akf ‖�(u) ≤ max(, M

β

f ) = M

β

f , which completes the first part of this theorem.
Finally, let φ(t) be a continuous function such that φ(t)

t is a non-decreasing or φ(t) is
superadditive on [,∞). Then �(x) is superquadratic by Lemma ., and consequently
we employ the refinement Jensen’s inequality as follows (cf. Lemma .):

�
(
Akf (x)

)
+


K(x)

∫
�

k(x, y)�
(∣∣f (y) – Akf (x)

∣∣)dμ(y)

≤ 
K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y),

which completes the rest of the proof by way of repeating the above discussion (.) and
(.). �

Theorem . Let (�,�,μ) be a measure space with positive σ -finite measure, u be a
weight function on �, and k : � × � → R be a non-negative measurable function. Let the
weight function v be defined by

v(x) =
∫

�

u(t)
(

k(t, x)
K(t)

)
dμ(t) < ∞, x ∈ �.

Suppose that � and � are N-functions, where � satisfies the �-condition, so that
� ◦ �–

 is an N-function. The complementary function of � ◦ �–
 is denoted by 	 . If

‖ v
u‖	(u) < ∞, then there exists a constant C such that the following norm inequality:

‖Akf ‖�(u) ≤ C‖f ‖�(u), (.)

holds for any non-negative measurable function f . Moreover, if there exists a constant C
such that the inequality

‖f ‖�(u) ≤ C‖f ‖�(v) (.)

holds for any non-negative function f , then we have ‖ u
v ‖	(v) < ∞.

Proof Without loss of generality, to prove the first statement we may assume that
‖f ‖�(u) = , which implies ‖�(f )‖�◦�–

 (u) ≤ . By Hölder’s inequality in Orlicz spaces
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(.) it yields

∫
�

u(t)�
(
Akf (t)

)
dμ(t) ≤

∫
�

u(t)
K(t)

(∫
�

k(t, x)�
(
f (x)

)
dμ(x)

)
dμ(t)

=
∫

�

�
(
f (x)

)(∫
�

u(t)
K(t)

k(t, x) dμ(t)
)

dμ(x)

=
∫

�

�
(
f (x)

)
v(x) dμ(x)

≤ 
∥∥�(f )

∥∥
�◦�–

 (u)

∥∥∥∥ v
u

∥∥∥∥
	(u)

≤ 
∥∥∥∥ v

u

∥∥∥∥
	(u)

.

Now we take C = max(, ‖ v
u‖	(u)), then one deduces

∫
�

u(t)�( Ak f (t)
C ) dμ(t) ≤ . This

proves (.).
Conversely, since the Luxemburg norm is dominated by the Orlicz norm itself, it suffices

to show that
∥∥∥∥u

v

∥∥∥∥
	(v)

≤ sup

{∫
�

u(x)f (x) dμ(x) :
∫

�

� ◦ �–


(
f (x)

)
v(x) dμ(x) ≤ 

}
< ∞.

Let
∫
�

� ◦ �–
 (f (x))v(x) dμ(x) ≤ , then ‖�–

 (f )‖�(v) ≤ . By (.) we have

∥∥�–
 (f )

∥∥
�(u) ≤ C.

According to the definition of the Luxemburg norm this shows that

∫
�

�

(
�–

 (f (x))
C

)
u(x) dμ(x) ≤ .

Note that � satisfies the �-condition, Proposition ., and hence the inequality∫
�

f (x)u(x) dμ(x) ≤ C holds for some constant C. Then we have ‖ u
v ‖	(v) ≤ C < ∞. �

Corollary . Suppose that (�,�,μ), u, k, and v are as in Theorem .. Let � and � be
N-functions such that � satisfies the �-condition and � ◦�–

 is an N-function. Denote
by 	 the complementary function of � ◦�–

 . If the inequality ‖ v
u‖	(u) < ∞ holds, then the

linear operator Ak : L�(u) → L�(u) is continuous and we have the following estimate:

‖Ak‖∗ ≤ max

(
, 

∥∥∥∥ v
u

∥∥∥∥
	(u)

)
.

Here ‖ · ‖∗ is the operator norm.

Proof According to the proof of inequality (.), we conclude that ‖Ak f ‖�(u)
‖f ‖�(u)

≤ max(,
‖ v

u‖	(u)) holds for any non-negative function f (x). Then we have ‖Ak‖∗ ≤ max(,
‖ v

u‖	(u)) and hence Ak is continuous. �

Let �(x) = 
p xp and �(x) = 

q xq in Theorem ., where  < q < p < ∞. It is clear that

�, � are N-functions satisfying the �-condition, and � ◦ �–
 =

∫ x
 q

p
q –t

p
q – dt is also

an N-function. Furthermore, the complementary N-function of � is calculated by 	(x) =
p–q
pq x

p
p–q . Then we have the following conclusion.
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Corollary . Let (�,�,μ) be a measure space with positive σ -finite measure, u(x), k(x, y),
v(x) be as in Theorem .. Suppose that �(x) = 

p xp and �(x) = 
q xq where  < q < p < ∞.

Then there exists a constant C such that the norm inequality holds:

‖Akf ‖�(u) ≤ C‖f ‖�(u),

for any non-negative function f and ‖ v
u‖	(u) < ∞ with 	(x) = p–q

pq x
p

p–q . Moreover, if there
exists a constant C such that the following inequality is valid:

‖f ‖�(u) ≤ C‖f ‖�(v),

for any non-negative function f , then ‖ u
v ‖	(v) < ∞ holds.

Proposition . Suppose that (�,�,μ) and (�,�,μ) are σ -finite measure spaces
and that T is a linear operator which maps any non-negative measurable functions on �

to some non-negative measurable functions on �. Let �(x) be an N-function, then

∫
�

�
(
Tf (x)

)
dμ(x) ≤

∫
�

�
(
Cf (y)

)
dμ(y),

if and only if

‖Tf ‖�(ε) ≤ C‖f ‖�(ε)

holds for all ε >  with C independent of ε (see Bloom’s paper in []).

Corollary . Assume that the assumptions in Proposition . are satisfied. Let T (r)
k be the

linear operator defined in (.) and �(x) be an N-function, then

∫
�

�
(
T (r)

k f (x)
)

dμ(x) ≤
∫

�

�
(
Cf (y)

)
dμ(y),

if and only if

∥∥T (r)
k f

∥∥
�(ε) ≤ C‖f ‖�(ε)

holds for all ε >  with C independent of ε.

It is clear that �(x) =
∫ x

 φ(t) dt in which φ(t) = et –  is an N-function. Then, by apply-
ing Proposition . to the linear operator T (r)

k and replacing f (x) by ln f (x), we obtain the
following important example.

Example . Assume that the assumptions in Proposition . are satisfied and that f (x)
is a measurable function such that f (x) ≥  for all x ∈ �. Then the following inequality:

∫
�

exp
{

T (r)
k ln f (x)

}
dμ(x) + I ≤

∫
�

f c(y) dμ(y),
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where I =
∫
�

(ln f (y) + ) dμ(y) –
∫
�

(T (r)
k ln f (x) + ) dμ(x) holds, if and only if

∥∥T (r)
k f

∥∥
�(ε) ≤ C‖f ‖�(ε) with �(x) = ex – x – 

holds for all ε >  with C independent of ε.
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