5 research outputs found

    Intrinsically active MEK variants are differentially regulated by proteinases and phosphatases

    Get PDF
    MAPK/ERK kinase (MEK) 1/2 are central signaling proteins that serve as specificity determinants of the MAPK/ERK cascade. More than twenty activating mutations have been reported for MEK1/2, and many of them are known to cause diseases such as cancers, arteriovenous malformation and RASopathies. Changes in their intrinsic activity do not seem to correlate with the severity of the diseases. Here we studied four MEK1/2 mutations using biochemical and molecular dynamic methods. Although the studied mutants elevated the activating phosphorylation of MEK they had no effect on the stimulated ERK1/2 phosphorylation. Studying the regulatory mechanism that may explain this lack of effect, we found that one type of mutation affects MEK stability and two types of mutations demonstrate a reduced sensitivity to PP2A. Together, our results indicate that some MEK mutations exert their function not only by their elevated intrinsic activity, but also by modulation of regulatory elements such as protein stability or dephosphorylation.We would like to thanks Mrs. Shira Wexler for her help in producing Fig. 7F. This study was supported by grants from ISF to RS. RS is an incumbent of the Yale S. Lewine and Ella Miller Lewine professorial chair for cancer research. CP acknowledges Severo Ochoa grant (SEV-2015-0493) for financial support. FLG acknowledges EPSRC [grant no EP/P022138/1; EP/P011306/1; EP/M013898/1] for financial support. HecBioSim [EPSRC grant no EP/P022138/1], Archer, JADE, the Hartree Centre, the Barcelona Supercomputing Center and PRACE are acknowledged for computer time. JF-R acknowledges Spanish MICINN grant [number BIO2016-79930-R] for financial support.Peer ReviewedPostprint (published version

    A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance

    Get PDF
    Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine

    Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution

    No full text
    A remarkable number of SARS-CoV-2 variants and other as yet unmonitored lineages harbor amino-acid substitutions with the potential to modulate the interface between the spike receptor-binding domain (RBD) and its receptor ACE2. The naturally occurring Q498Y substitution, which is present in currently circulating SARS-CoV-2 variants, has drawn the attention of several investigations. While computational predictions and in vitro binding studies suggest that Q498Y increases the binding affinity of the spike protein for ACE2, experimental in vivo models of infection have shown that a triple mutant carrying the Q498Y replacement is fatal in mice. To accurately characterize the binding kinetics of the RBD Q498Y-ACE2 interaction, biolayer interferometry analyses were performed. A significant enhancement of the RBD-ACE2 binding affinity relative to a reference SARS-CoV-2 variant of concern carrying three simultaneous replacements was observed. In addition, the RBD Q498Y mutant bound to ACE2 was crystallized. Compared with the structure of its wild-type counterpart, the RBD Q498Y-ACE2 complex reveals the conservation of major hydrogen-bond interactions and a more populated, nonpolar set of contacts mediated by the bulky side chain of Tyr498 that collectively lead to this increase in binding affinity. In summary, these studies contribute to a deeper understanding of the impact of a relevant mutation present in currently circulating SARS-CoV-2 variants which might lead to stronger host-pathogen interactions

    Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment

    No full text
    International audienceWe present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements
    corecore