11,612 research outputs found
Persistence in Mathematics by Underrepresented Students: Experiences of a Math Excel Program
Success in mathematics by underrepresented and nontraditional college students is measured not only by academic performance (grades), but also by the continued participation and persistence of these students in mathematics coursework. The Math Excel program at Oregon State University attempts to build learning communities with a sharp academic focus in support of students concurrently taking introductory level mathematics courses. The Math Excel program is based heavily on Uri Treisman\u27s Emerging Scholars Workshop model of collaborative problem solving. In this article, we examine the experience of minority students in the Educational Opportunities Program participating in the Math Excel program. While the program had appeared successful in terms of improving academic performance in the concurrent mathematics course, the continued participation and persistence of these students in mathematics was disappointing. On a trial basis, structural changes were made to build a much stronger identification of the Math Excel learning community with a section of College Algebra. In the next term, there was a much higher incidence of participation in the subsequent Precalculus using the same Math Excel structure. While the collaborative problem solving activity provided in Math Excel was crucial to students\u27 successful academic performance, these results suggest that subtle issues related to students\u27 recognition of and identification with a learning community may be critically important to underrepresented and nontraditional students\u27 continued persistence in mathematics
A Practical Guide to Robust Optimization
Robust optimization is a young and active research field that has been mainly
developed in the last 15 years. Robust optimization is very useful for
practice, since it is tailored to the information at hand, and it leads to
computationally tractable formulations. It is therefore remarkable that
real-life applications of robust optimization are still lagging behind; there
is much more potential for real-life applications than has been exploited
hitherto. The aim of this paper is to help practitioners to understand robust
optimization and to successfully apply it in practice. We provide a brief
introduction to robust optimization, and also describe important do's and
don'ts for using it in practice. We use many small examples to illustrate our
discussions
Generalized modified gravity with the second order acceleration equation
In the theories of generalized modified gravity, the acceleration equation is
generally fourth order. So it is hard to analyze the evolution of the Universe.
In this paper, we present a class of generalized modified gravity theories
which have the acceleration equation of second order derivative. Then both the
cosmic evolution and the weak-field limit of the theories are easily
investigated. We find that not only the Big-bang singularity problem but also
the current cosmic acceleration problem could be easily dealt with.Comment: 8 pages, 2 figures. To appear in Phys. Rev.
New ion trap for atomic frequency standard applications
A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced
Atomic frequency standards for ultra-high-frequency stability
The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others
Inflation dynamics and food prices in an agricultural economy : the case of Ethiopia
Ethiopia has experienced a historically unprecedented increase in inflation, mainly driven by cereal price inflation, which is among the highest in Sub-Saharan Africa. Using monthly data from the past decade, the authors estimate error correction models to identify the relative importance of several factors contributing to overall inflation and its three major components, cereal prices, food prices, and non-food prices. The main finding is that, in a longer perspective, over three to four years, the main factors that determine domestic food and non-food prices are the exchange rate and international food and goods prices. In the short run, agricultural supply shocks and inflation inertia strongly affect domestic inflation, causing large deviations from long-run price trends. Money supply growth does affect food price inflation in the short run, although the money stock itself does not seem to drive inflation. The results suggest the need for a multi-pronged approach to fight inflation. Forecast scenarios suggest monetary and exchange rate policies need to take into account cereal production, which is among the key determinants of inflation, assuming a decline in global commodity prices. Implementation of successful policies will be contingent on the availability of foreign exchange and the performance of agriculture.Markets and Market Access,Currencies and Exchange Rates,Economic Theory&Research,Food&Beverage Industry,Emerging Markets
The JPL trapped mercury ion frequency standard
In order to provide frequency standards for the Deep Space Network (DSN) which are more stable than present-day hydrogen masers, a research task was established under the Advanced Systems Program of the TDA to develop a Hg-199(+) trapped ion frequency standard. The first closed-loop operation of this kind is described. Mercury-199 ions are confined in an RF trap and are state-selected through the use of optical pumping with 194 nm UV light from a Hg-202 discharge lamp. Absorption of microwave radiation at the hyperfine frequency (40.5 GHz) is signaled by atomic fluorescence of the UV light. The frequency of a 40.5 GHz oscillator is locked to a 1.6 Hz wide atomic absorption line of the trapped ions. The measured Allan variance of this locked oscillator is currently gamma sub y (pi) = 4.4 x 10 to the minus 12th/square root of pi for 20 is less than pi is less than 320 seconds, which is better stability than the best commercial cesium standards by almost a factor of 2. This initial result was achieved without magnetic shielding and without regulation of ion number
Statistical evaluation of control inputs and eye movements in the use of instruments clusters during aircraft landing
Two different types of analyses were done on data from a study in which eye movements and other variables were recorded while four pilots executed landing sequences in a Boeing 737 simulation. Various conditions were manupulated, including changes in turbulence, starting position, and instrumentation. Control inputs were analyzed in the context of the various conditions and compared against ratings of workload obtained using the Cooper-Harper scale. A number of eye-scanning measures including mean dwell time and transition from one instrument to another were entered into a principal components factor analysis. The results show a differentiation between control inputs and eye-scanning behavior. This shows the need for improved definition of workload and experiments to uncover the important differences among control inputs, eye-scanning and cognitive processes of the pilot
- …