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Abstract
Robust optimization is a young and active research field that has been mainly developed

in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the
information at hand, and it leads to computationally tractable formulations. It is therefore
remarkable that real-life applications of robust optimization are still lagging behind; there is
much more potential for real-life applications than has been exploited hitherto. The aim of this
paper is to help practitioners to understand robust optimization and to successfully apply it in
practice. We provide a brief introduction to robust optimization, and also describe important
do’s and don’ts for using it in practice. We use many small examples to illustrate our discussions.

This is an author-created, un-copyedited version of an article published in Omega DOI:10.1016/j.omega.2014.12.006.

1 Introduction
Real-life optimization problems often contain uncertain data. Data can be inherently stochas-
tic/random or it can be uncertain due to errors. The reasons for data errors could be measure-
ment/estimation errors that come from the lack of knowledge of the parameters of the mathematical
model (e.g., the uncertain demand in an inventory model) or could be implementation errors that
come from the physical impossibility to exactly implement a computed solution in a real-life set-
ting. There are two approaches to deal with data uncertainty in optimization, namely robust and
stochastic optimization. Stochastic optimization (SO) has an important assumption, i.e., the true
probability distribution of uncertain data has to be known or estimated. If this condition is met
and the reformulation of the uncertain optimization problem is computationally tractable, then SO
is the methodology to solve the uncertain optimization problem at hand. For details on SO, we
refer to Prékopa (1995), Birge and Louveaux (2011) and Ruszczyński and Shapiro (2003), but the
list of references can be easily extended.

Robust optimization (RO), on the other hand, does not assume that probability distributions
are known, but instead it assumes that the uncertain data resides in a so-called uncertainty set.
Additionally, basic versions of RO assume “hard” constraints, i.e., constraint violation cannot
be allowed for any realization of the data in the uncertainty set. RO is popular because of its
computational tractability for many classes of uncertainty sets and problem types. For a detailed
overview of the RO framework, we refer to Ben-Tal et al. (2009), Ben-Tal and Nemirovski (2008)
and Bertsimas et al. (2011).

Although the first published study (Soyster 1973) dates back to 1970s, RO is a relatively young
and active research field, and has been mainly developed in the last 15 years. There have been many
publications that show the value of RO in many fields of application including finance (Lobo 2000),
energy (Bertsimas et al. 2013b, Babonneau et al. 2010), supply chain (Ben-Tal et al. 2005, Lim
2013), healthcare (Fredriksson et al. 2011), engineering (Ben-Tal and Nemirovski 2002), scheduling
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(Yan and Tang 2009), marketing (Wang and Curry 2012), etc. Indeed, the RO concepts and
techniques are very useful for practice, since they are tailored to the information at hand and leads
to tractable formulations. It is therefore remarkable that real-life applications are still lagging
behind; there is much more potential for real-life applications than has been exploited hitherto.

In this paper we give a concise description of the basics of RO, including so-called adjustable
RO for multi-stage optimization problems. Moreover, we extensively discuss several items that are
important when applying RO, and that are often not well understood or incorrectly applied by
practitioners. Several important do’s and don’ts are discussed, which may help the practitioner to
successfully apply RO. We use many small examples to illustrate our discussions.

The remainder of the paper is organized as follows. Section 2 gives a concise introduction to
RO. Section 3-10 discuss several important practical issues in more detail. An important ingredient
of RO is the so-called uncertainty set, which is the set of values for the uncertain parameters that
are taken into account in the robust problem. This set has to be specified by the user, and Section 3
presents several ways how to construct uncertainty sets. Section 4 discusses an important technical
aspect in adjustable RO. In practice, multi-stage problems may contain adjustable variables that
are integer. Section 5 proposes a RO method that deals with such integer variables. Section 6
warns that the robust versions of equivalent deterministic problems are not necessarily equivalent,
and gives the correct robust counterparts. Section 7 discusses that equality constraints containing
uncertain parameters needs a special treatment. In RO one optimizes for the worst case scenario,
i.e., for the worst case values of the uncertain parameters. Although this statement is true, the
way it is formulated is often misunderstood. In Section 8, we therefore clarify how it should be
formulated. It is important to test how robust the final solution is, and to compare it to, e.g.,
the nominal solution. Section 9 discusses how to assess the robustness performance of a given
solution via a simulation study. Section 10 shows that RO applied in a folding horizon setting may
yield better solutions than adjustable RO for multi-stage problems. Section 11 summarizes our
conclusions, and indicates future research topics.

2 Introduction to robust optimization
In this section we first give a brief introduction to RO, and then we give a procedure for applying
RO in practice. The scopes of the following sections are also presented in this section.

2.1 Robust optimization paradigm

For the sake of exposition, we use an uncertain linear optimization problem, but we point out that
most of our discussions in this paper can be generalized for other classes of uncertain optimization
problems. The “general” formulation of the uncertain linear optimization problem is as follows:

min
x
{c>x : Ax ≤ d}(c,A,d)∈U , (1)

where c ∈ Rn, A ∈ Rm×n and d ∈ Rm denote the uncertain coefficients, and U denotes the user
specified uncertainty set. The “basic” RO paradigm is based on the following three assumptions
(Ben-Tal et al. 2009, p. xii):

A.1. All decision variables x ∈ Rn represent “here and now” decisions: they should get specific
numerical values as a result of solving the problem before the actual data “reveals itself”.

A.2. The decision maker is fully responsible for consequences of the decisions to be made when,
and only when, the actual data is within the prespecified uncertainty set U .
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A.3. The constraints of the uncertain problem in question are “hard”, i.e., the decision maker
cannot tolerate violations of constraints when the data is in the prespecified uncertainty set
U .

In addition to the “basic” assumptions, we may assume without loss of generality that: 1) the
objective is certain; 2) the constraint right-hand side is certain; 3) U is compact and convex; and
4) the uncertainty is constraint-wise. Below, we explain the technical reasons of why these four
assumptions are not restrictive.

E.1. Suppose the objective coefficients (c) are uncertain and (say) these coefficients reside in the
uncertainty set C:

min
x

max
c∈C
{c>x : Ax ≤ d ∀A ∈ U}.

Without loss of generality we may assume that the uncertain objective of the optimization
problem can be equivalently reformulated as certain (Ben-Tal et al. 2009, p. 10):

min
x, t
{t : c>x− t ≤ 0 ∀c ∈ C, Ax ≤ d ∀A ∈ U},

using a reformulation and the additional variable t ∈ R.

E.2. The second assumption is not restrictive because the uncertain right-hand side of a constraint
can always be translated to an uncertain coefficient by introducing an extra variable xn+1 =
−1.

E.3. The uncertainty set U can be replaced by its convex hull conv(U), i.e., the smallest convex set
that includes U , because testing the feasibility of a solution with respect to U is equivalent
to taking the supremum of the left hand side of a constraint over U , which yields the same
optimal objective value if the maximization is conv(U). For details of the formal proof and
the compactness assumption, see (Ben-Tal et al. 2009, pp. 12–13).

E.4. To illustrate that robustness with respect to U can always be formulated constraint-wise,
consider a problem with two constraints and with uncertain parameters d1 and d2: x1+d1 ≤ 0,
x2 + d2 ≤ 0. Let U = {d ∈ R2 : d1 ≥ 0, d2 ≥ 0, d1 + d2 ≤ 1} be the uncertainty set. Then,
Ui = [0, 1] is the projection of U on di. It is easy to see that robustness of the i-th constraint
with respect to U is equivalent to robustness with respect to Ui, i.e., the uncertainty in the
problem data can be modelled constraint-wise. For the general proof, see (Ben-Tal et al. 2009,
pp. 11–12).

For uncertain nonlinear optimization problems, the assumptions are also without loss of generality,
except the third basic assumption [E.3].

If we assume c ∈ Rn and d ∈ Rm are certain, then the robust reformulation of (1) that is
generally referred to as the robust counterpart (RC) problem is given as follows:

min
x
{c>x : A(ζ)x ≤ d ∀ζ ∈ Z

}
, (2)

where Z ⊂ RL denotes the user specified primitive uncertainty set. A solution x ∈ Rn is called
robust feasible if it satisfies the uncertain constraints [A(ζ)x ≤ d] for all realizations of ζ ∈ Z.

As it is mentioned above, and explained in [E.4], we may focus on a single constraint, since
the uncertainty is constraint-wise in RO. A single constraint taken out of (2) can be modeled as
follows:

(a+ P ζ)>x ≤ d ∀ζ ∈ Z. (3)
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In the left-hand side of (3), we use a factor model to formulate a single constraint of (2) as an
affine function a+ P ζ of the primitive uncertain parameter ζ ∈ Z, where a ∈ Rn and P ∈ Rn×L.
One of the most famous example of such a factor model is the 3-factor model of Fama and French
(1993), which models different type of assets as linear functions of a limited number of uncertain
economic factors. To point out, the dimension of the general uncertain parameter P ζ is often much
higher than that of the primitive uncertain parameter ζ (i.e., n� L).

2.2 Solving the robust counterpart

Notice that (3) contains infinitely many constraints due to the for all (∀) quantifier imposed by
the worst case formulation, i.e., it seems intractable in its current form. There are two ways to
deal with this. The first way is to apply robust reformulation techniques to exclude the for all (∀)
quantifier. If deriving such a robust reformulation is not possible, then the second way is to apply
the adversarial approach. In this section, we describe the details of these two approaches.

We start with the first approach, which consists of three steps. The result will be a com-
putationally tractable RC of (3), which contains a finite number of constraints. Note that this
reformulation technique is one of the main techniques in RO (Bertsimas et al. 2011).

We illustrate the three steps of deriving the RC based on a polyhedral uncertainty set:

Z = {ζ : Dζ + q ≥ 0},

where D ∈ Rm×L, ζ ∈ RL, and q ∈ Rm.
Step 1 (Worst case reformulation). Notice that (3) is equivalent to the following worst case
reformulation:

a>x+ max
ζ: Dζ+q≥0

(P>x)>ζ ≤ d. (4)

Step 2 (Duality). We take the dual of the inner maximization problem in (4). The inner maxi-
mization problem and its dual yield the same optimal objective value by strong duality. Therefore,
(4) is equivalent to

a>x+ min
w
{q>w : D>w = −P>x, w ≥ 0} ≤ d. (5)

Step 3 (RC ). It is important to point out that we can omit the minimization term in (5), since
it is sufficient that the constraint holds for at least one w. Hence, the final formulation of the RC
becomes

∃ w : a>x+ q>w ≤ d, D>w = −P>x, w ≥ 0. (6)

Note that the constraints in (6) are linear in x ∈ Rn and w ∈ Rm.
Table 1 presents the tractable robust counterparts of an uncertain linear optimization problem

for different classes of uncertainty sets. These robust counterparts are derived using the three
steps that are described above. However, we need conic duality instead of LP duality in Step 2
to derive the tractable robust counterparts for the conic uncertainty set; see the fourth row of
Table 1. Similarly, to derive the tractable RC for an uncertainty region specified by general convex
constraints, i.e., in the fifth row of Table 1, we need Fenchel duality in Step 2; see Rockafellar (1997)
for details on Fenchel duality, and Ben-Tal et al. (2014) for the formal proof of the associated RC
reformulation. Notice that each RC constraint has a positive safeguard in the constraint left-hand
side, e.g., ‖P>x‖1, ‖P>x‖2, and q>w; see the tractable RCs in the third column of Table 1.
These safeguards represent the level of robustness that we introduce to the constraints. Note the
equivalence between the robust counterparts of the polyhedral and the conic uncertainty set when
K is the nonnegative orthant.
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Table 1: Tractable reformulations for the uncertain constraint [(a+ P ζ)>x ≤ d ∀ζ ∈ Z]
for different types of uncertainty sets

Uncertainty Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ 1 a>x+ ‖P>x‖1 ≤ d LP
Ellipsoidal ‖ζ‖2 ≤ 1 a>x+ ‖P>x‖2 ≤ d CQP

Polyhedral Dζ + q ≥ 0


a>x+ q>w ≤ d
D>w = −P>x
w ≥ 0

LP

Cone (closed, convex, pointed) Dζ + q ∈ K


a>x+ q>w ≤ d
D>w = −P>x
w ∈ K∗

Conic Opt.

Convex cons. hk(ζ) ≤ 0 ∀k


a>x+

∑
k ukh

∗
k

(
wk

uk

)
≤ d∑

kw
k = P>x

u ≥ 0
Convex Opt.

(∗) h∗ is the convex conjugate function, i.e, h∗(x) = supy{x>y − h(y)}; and K∗ is the dual cone of K;
Table taken from Ben-Tal et al. (2014)

Nonlinear problems. Table 1 focuses on uncertain linear optimization problems, i.e., both linear
in the decision variables and the uncertain parameters. Notice that, different than the presented
results, the original uncertain optimization problem can be nonlinear in the optimization variables
and/or the uncertain parameters; for more detailed treatment of such problems that are nonlinear
in the uncertain parameters, we refer to Ben-Tal et al. (2009, pp. 383–388) and Ben-Tal et al.
(2014).

Adversarial approach. If the robust counterpart cannot be written as or approximated by a
tractable reformulation, we advocate to perform the so-called adversarial approach. The adversarial
approach starts with a finite set of scenarios Si ⊂ Zi for the uncertain parameter in constraint i.
For example, at the start, Si only contains the nominal scenario. Then, the robust optimization
problem, which has a finite number of constraints since Zi has been replaced by Si, is solved. If the
resulting solution is robust feasible, we have found the robust optimal solution. If that is not the
case, we can find a scenario for the uncertain parameter that makes the last found solution infeasible,
e.g., we can search for the scenario that maximizes the infeasibility. We add this scenario to Si,
and solve the resulting robust optimization problem, and so on. For a more detailed description,
we refer to Bienstock and Özbay (2008). It appeared that this simple approach often converges to
optimality in a few number of iterations. The advantage of this approach is that solving the robust
optimization problem with Si instead of Zi in each iteration, preserves the structure of the original
optimization problem. Only constraints of the same type are added, since constraint i should
hold for all scenarios in Si. This approach could be faster than reformulating, even for polyhedral
uncertainty sets. See Bertsimas et al. (2014) for a comparison. Alternatively, if the probability
distribution of the uncertain parameter is known, one may also use the randomized sampling of the
uncertainty set proposed by Calafiore and Campi (2005). The randomized approach substitutes
the infinitely many robust constraints with a finite set of constraints that are randomly sampled. It
is shown that such a randomized approach is an accurate approximation of the original uncertain
problem provided that a sufficient number of samples is drawn; see Campi and Garatti (2008,
Theorem 1).
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Pareto efficiency. Iancu and Trichakis (2014) discovered that “the inherent focus of RO on
optimizing performance only under worst case outcomes might leave decisions un-optimized in
case a non worst case scenario materialized”. Therefore, the “classical” RO framework might
lead to a Pareto inefficient solution; i.e., an alternative robust optimal solution may guarantee an
improvement in the objective or slack size for (at least) one scenario without deteriorating it in
other scenarios. Given a robust optimal solution, Iancu and Trichakis propose optimizing a new
problem to find a solution that is Pareto efficient. In this new problem, the objective is optimized
for a scenario in the interior of the uncertainty set, e.g., for the nominal scenario, while the worst
case objective is constrained to be not worse than the robust optimal objective value. For more
details on Pareto efficiency in robust linear optimization we refer to Iancu and Trichakis (2014).

2.3 Adjustable robust optimization

In multistage optimization, the first assumption [A.1] of the RO paradigm, i.e., the decisions are
“here and now”, can be relaxed. For example, the amount a factory will produce next month is not
a “here and now” decision, but a “wait and see” decision that will be taken based on the amount
sold in the current month. Some decision variables can therefore be adjusted at a later moment in
time according to a decision rule, which is a function of (some or all part of) the uncertain data.
The adjustable RC (ARC) is given as follows:

min
x,y(·)

{c>x : A(ζ)x+By(ζ) ≤ d ∀ζ ∈ Z}, (7)

where x ∈ Rn is the first-stage “here and now” decision that is made before ζ ∈ RL is realized,
y ∈ Rk denotes the second-stage “wait and see” decision that can be adjusted according to the
actual data, and B ∈ Rm×k denotes a certain coefficient matrix (i.e., fixed recourse).

However, ARC is a complex problem unless we restrict the function y(ζ) to specific classes;
see Ben-Tal et al. (2009, Ch. 14) for details. In practice, y(ζ) is often approximated by affine (or
linear) decision rules:

y(ζ) := y0 +Qζ, (8)

because they yield computationally tractable affinely ARC (AARC) reformulations, where y0 ∈ Rk
and Q ∈ Rk×L are the coefficients in the decision rule, which are to be optimized. Eventually, the
tractable reformulation of the constraints in (7):

min
x,y0,Q

{c>x : A(ζ)x+By0 +BQζ ≤ d ∀ζ ∈ Z}

can be derived in a similar vein by applying the three steps that are described above, since the
problem is affine in the uncertain parameter ζ, and the decision variables x, y0, and Q.

To point out, ARO is less conservative than the classic RO approach, since it yields more flexible
decisions that can be adjusted according to the realized portion of data at a given stage. More
precisely, ARO yields optimal objective values that are at least as good as that of the standard RO
approach. In addition, aside from introducing additional variables and constraints, the AARC does
not introduce additional computational complexity to that of RO with fixed recourse, and it can
be straightforwardly adopted to the classic RO framework, i.e., the AARC is a computationally
tractable approach. Moreover, affine decision rules are optimal or near optimal for many practical
cases; e.g., inventory management (Bertsimas et al. 2010). Last but not least, ARO has many
applications in real-life, e.g., supply chain management (Ben-Tal et al. 2005), project management
(Ben-Tal et al. 2009, Ex. 14.2.1), engineering (Ben-Tal and Nemirovski 2002), and so on.
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Table 2:
Practical RO procedure Ref. section(s)

Step 0: Solve the nominal problem. -

Step 1: a) Determine the uncertain parameters. § 3
b) Determine the uncertainty set.

Step 2: Check robustness of the nominal solution. § 9
IF the nominal solution is robust “enough” THEN stop.

Step 3: a) Determine the adjustable variables. §§ 5
b) Determine the type of decision rules. §§ 4, 10

Step 4: Formulate the robust counterpart. §§ 6, 7, 8

Step 5: Solve the (adjustable) robust counterpart via an exact or ap-
proximate tractable reformulation, or via the adversarial ap-
proach.

§ 2

Step 6: Check quality of the robust solution. § 9
IF the solution is “too conservative” THEN go to Step 1b or
Step 3.

Notice that we adopt affine decision rules in the ARC, but it is important to point out that
tractable ARC reformulations for nonlinear decision rules also exist for specific classes; we refer to
Ben-Tal et al. (2009, Ch. 14.3) and Georghiou et al. (2014).

Integer adjustable variables. A parametric decision rule, like the linear one in (8), cannot be
used for integer adjustable variables, since we have then to enforce that the decision rule is integer
for all ζ ∈ Z. In Section 5 we propose a general way for dealing with adjustable integer variables
similar to Bertsimas and Caramanis (2010). However, much more research is needed.
2.4 Robust optimization procedure

Now having introduced the general notation in RO and adjustable RO (ARO), we can give a
procedure for applying RO in practice; see Table 2.
In the remainder of this paper, we describe the most important items at each step of this procedure.
The associated section(s) for each step are reported in the last column of Table 2.

3 Choosing the uncertainty set
In this section we describe different possible uncertainty sets and their advantages and disadvan-
tages. Often one wants to make a trade-off between robustness against each physical realization of
the uncertain parameter and the size of the uncertainty set. A box uncertainty set that contains the
full range of realizations for each component of ζ is the most robust choice and guarantees that the
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constraint is never violated, but on the other hand there is only a small chance that all uncertain
parameters take their worst case values. This has led to the development of smaller uncertainty
sets that still guarantee that the constraint is “almost never” violated. Such guarantees are inspired
by chance constraints, which are constraints that have to hold with at least a certain probability.
Often the underlying probability distribution is not known, and one seeks a distributionally ro-
bust solution. One application of RO is to provide a tractable safe approximation of the chance
constraint in such cases, i.e., a tractable formulation that guarantees that the chance constraint
holds:

if x satisfies a(ζ)>x ≤ d ∀ζ ∈ Uε, then x also satisfies Pζ(a(ζ)>x ≤ d) ≥ 1− ε. (9)

For ε = 0, a chance constraint is a traditional robust constraint. The challenge is to determine the
set Uε for other values of ε. We distinguish between uncertainty sets for uncertain parameters and
for uncertain probability vectors.

For uncertain parameters, many results are given in (Ben-Tal et al. 2009, Chapter 2). The
simplest case is when the only knowledge about ζ is that ||ζ||∞ ≤ 1. For this case, the box
uncertainty set is the only set that can provide a probability guarantee (of ε = 0). When more
information becomes available, such as bounds on the mean or variance, or knowledge that the
probability distribution is symmetric or unimodal, smaller uncertainty sets become available. Ben-
Tal et al. (2009, Table 2.3) list seven of these cases. Probability guarantees are only given when
||ζ||∞ ≤ 1, E(ζ) = 0 and the components of ζ are independent. We mention the uncertainty
sets that are used in practice when box uncertainty is found to be too pessimistic. The first is an
ellipsoid (Ben-Tal et al. 2009, Proposition 2.3.1), possibly intersected with a box (Ben-Tal et al.
2009, Proposition 2.3.3):

Uε = {ζ : ||ζ||2 ≤ Ω ||ζ||∞ ≤ 1}, (10)

where ε = exp(−Ω2/2). The second is a polyhedral set (Ben-Tal et al. 2009, Proposition 2.3.4),
called budgeted uncertainty set or the “Bertsimas and Sim” uncertainty set (Bertsimas and Sim
2004):

Uε = {ζ : ||ζ||1 ≤ Γ ||ζ||∞ ≤ 1}, (11)

where ζ ∈ RL, and ε = exp(−Γ2/(2L)). A stronger bound is provided in (Bertsimas and Sim
2004). This set has the interpretation that (integer) Γ controls the number of elements of ζ that
may deviate from their nominal values. (10) leads to better objective values for a fixed ε compared
to (11), but gives rise to a CQP for an uncertain LP while (11) results in an LP and is therefore
more tractable from a computational point of view.

Bandi and Bertsimas (2012) propose uncertainty sets based on the central limit theorem. When
the components of ζ ∈ RL are independent and identically distributed with mean µ and variance
σ2, the uncertainty set is given by:

Uε =
{
ζ :
∣∣∣∣∣
L∑
i=1

ζi − Lµ
∣∣∣∣∣ ≤ ρ√nσ

}
,

where ρ controls the probability of constraint violation 1 − ε. Bandi and Bertsimas also show
variations on Uε that incorporate correlations, heavy tails, or other distributional information. The
advantage of this uncertainty set is its tractability, since the robust counterpart of an LP with this
uncertainty set is also LP. A disadvantage of this uncertainty set is that it is unbounded for L > 1,
since one component of ζ can be increased to an arbitrarily large number (while simultaneously
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decreasing a different component). This may lead to intractability of the robust counterpart or to
trivial solutions. In order to avoid infeasibility, it is necessary to define separate uncertainty sets
for each constraint, where the summation runs only over the elements of ζ that appear in that
constraint. Alternatively, it may help to take the intersection of Uε with a box.

Bertsimas et al. (2013a) show how to construct uncertainty sets based on historical data and
statistical tests. An advantage compared to the aforementioned approach, is that it requires fewer
assumptions. For example, independence of the components of ζ is not required. They have
included a section with practical recommendations, which is too extensive to discuss here.

Bertsimas and Brown (2009) show how to construct uncertainty sets based on coherent risk
measures that model the preferences of the decision maker, and on past observations of the uncertain
data. Starting from a representation theorem of coherent risk measures, they make a natural link
to RO. For a specific class of risk measures, this gives rise to polyhedral uncertainty sets.

We now focus on uncertain probability vectors, i.e,. U ⊂ ∆L−1 = {p ∈ RL : p ≥ 0,
∑L
i=1 pi =

1}. These appear, e.g., in a constraint on expected value or variance. Ben-Tal et al. (2013) construct
uncertainty sets based on φ-divergence. The φ-divergence between the vectors p and q is:

Iφ(p, q) =
L∑
i=1

qiφ

(
pi
qi

)
,

where φ is the (convex) φ-divergence function. Let p denote a probability vector and let q be
the vector with observed frequencies when N items are sampled according to p. Under certain
regularity conditions,

2N
φ′′(1)Iφ(p, q) d→ χ2

L−1 as N →∞.

This motivates the use of the following uncertainty set:

Uε = {p : p ≥ 0, e>p = 1, 2N
φ′′(1)Iφ(p, p̂) ≤ χ2

L−1;1−ε},

where p̂ is an estimate of p based on N observations, and χ2
L−1;1−ε is the 1 − ε percentile of

the χ2 distribution with L − 1 degrees of freedom. The uncertainty set contains the true p with
(approximate) probability 1−ε. Ben-Tal et al. (2013) give many examples of φ-divergence functions
that lead to tractable robust counterparts.

An alternative to φ-divergence is using the Anderson-Darling test to construct the uncertainty
set (Ben-Tal et al. 2014, Ex. 15).

For multistage problems, Goh and Sim (2010) show how to construct uncertainty sets based
on, e.g., the covariance matrix or bounds on the expected value. They show how these sets can be
used for optimizing piecewise-linear decision rules.

We conclude this section by pointing out a mistake that is sometimes made regarding the
interpretation of the uncertainty set. Sometimes the set U in (9) is constructed such that it contains
the true parameter with probability ε. This provides a much stronger probability guarantee than
one expects. For example, let the uncertain parameter ζ ∈ RL with L = 10 have independent
components with mean 0 and variance 1. Then, ζ>ζ ∼ χ2

L, so the set Uε = {ζ : ||ζ||2 ≤
√
χ2
L;1−ε}

contains ζ with probability 1 − ε. Consequently, the logical implication (9) holds. However, the
probability in (9) is much larger than ε, since the constraint also holds for the “good” realizations of
the uncertain parameter outside the uncertainty set. For example, the singleton Uε = {0} satisfies
P(ζ ∈ Uε) = 0, but the probability on the right hand side of (9) is 0.5 if the components of ζ are
independent and have a median of 0. To see this, note that a(ζ)>x is an affine function of ζ, and
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therefore has a median of d = a(0)>x. So, the probability that a(ζ)>x becomes larger than d
equals the probability that it becomes smaller. In order to construct the correct set Uε, we first
write the explicit chance constraint. Since (a+ Pζ)>x ≤ d is equivalent to a>x+ (P>x)>ζ ≤ d,
and since the term (P>x)>ζ follows a normal distribution with mean 0 and standard deviation∣∣∣∣∣∣P>x∣∣∣∣∣∣

2
, the chance constraint can explicitly be formulated as a>x + z1−ε

∣∣∣∣∣∣P>x∣∣∣∣∣∣
2
≤ d, where

z1−ε is the 1−ε percentile of the normal distribution. This is the robust counterpart of the original
linear constraint with ellipsoidal uncertainty and a radius of z1−ε. The value z1−ε = 9.3 coincides
with ε ≈ 7.0 · 10−21. So, while one thinks to construct a set that makes the constraint hold in 50%
of the cases, the set actually makes the constraint hold in almost all cases. To make the chance
constraint hold with probability 1 − ε, the radius of the ellipsoidal uncertainty set is z1−ε instead
of
√
χ2
L;1−ε. These only coincide for L = 1.

4 Linearly adjustable robust counterpart: linear in what?
Tractable examples of decision rules used in ARO are linear (or affine) decision rules (AARC) (Ben-
Tal et al. 2009, Chapter 14) or piecewise linear decision rules (Chen et al. 2008); see also Section
2.3. The AARC was introduced by Ben-Tal et al. (2004) as a computationally tractable method to
handle adjustable variables. In the following constraint:

(a+ Pζ)>x+ b>y ≤ d ∀ζ ∈ Z,

y is an adjustable variable whose value may depend on the realization of the uncertain ζ, while b
does not depend on ζ (fixed recourse). There are two different AARCs for this constraint:

AARC 1. y is linear in ζ (e.g., see Ben-Tal et al. (2004) and Ben-Tal et al. (2009, Chapter
14)), or

AARC 2. y is linear in a+ Pζ (e.g., see Roelofs and Bisschop (2012, Chapter 20.4)).
Note that AARC 2 is as least as conservative as AARC 1, since the linear transformation of
ζ 7→ a + Pζ can only lead to loss of information, and that both methods are equivalent if the
linear transformation is injective on Z. The choice for a particular method may be influenced by
four factors: (i) the availability of information. An actual decision cannot depend on ζ if ζ has
not been observed. (ii) The number of variables in the final problem. AARC 1 leads to |ζ| extra
variables compared to the RC, whereas AARC 2 leads to |a| extra variables. (iii) Simplicity for the
user. Often the user observes model parameters instead of the primitive uncertainty vector. (iv)
For state or analysis variables one should always use the least conservative method.

The practical issue raised in the first factor (availability of information) has been addressed with
an information base matrix P . Instead of being linear in ζ, y can be made linear in Pζ. We give
one example where uncertain demand is observed. Suppose there are two time periods and three
possible scenarios for demand time period one and two, namely (10, 10)>, (10, 11)> and (11, 11)>.
So, the uncertainty set of the demand vector is the convex hull of these scenarios: {Pζ : ζ ∈ Z}
where P is the matrix with the scenarios as columns and Z = ∆2 = {ζ ∈ R3 :

∑3
`=1 ζ` = 1, ζ ≥ 0}

is the standard simplex in R3. If the observed demand for time period one is 10, it is not possible
to distinguish between ζ = (1, 0, 0)> and ζ = (0, 1, 0)>. So, a decision for time period two can be
modeled either as AARC 1 with P = (1, 1, 0) or as AARC 2. The latter leads to a decision rule
that is easier to interpret, since it directly relates to previously observed demand.
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5 Adjustable integer variables
Ben-Tal et al. (2009, Chapter 14) use parametric decision rules for adjustable continuous variables.
However, their novel techniques “generally” cannot be applied for adjustable integer variables. In
the literature two alternative approaches have been proposed. Bertsimas and Georghiou (2013)
introduced an iterative method to treat adjustable binary variables as piecewise constant functions.
The approach by Bertsimas and Caramanis (2010) is different and is based on splitting the uncer-
tainty region into smaller subsets, where each subset has its own binary decision variable (see also
Vayanos et al. (2011), and Hanasusanto et al. (2014)). In this section, we briefly show this last
method to treat adjustable integer variables, and show how the average behavior can be improved.
We use the following notation for the general RC problem:

(RC1) max
x,y,z

c(x, y, z)

s.t. A(ζ) x+B(ζ) y + C(ζ) z ≤ d, ∀ζ ∈ Z,

where x ∈ Rn1 and y ∈ Zn2 are “here and now” variables, i.e., decisions on them are made before
the uncertain parameter ζ, contained in the uncertainty set Z ⊆ RL , is revealed; z ∈ Zn3 is a “wait
and see” variable, i.e., the decision on z is made after observing (part of) the value of the uncertain
parameter. A(ζ) ∈ Rm1×n1 and B(ζ) ∈ Rm2×n2 are the uncertain coefficient matrices of the “here
and now” variables. Notice that the integer “wait and see” variable z has an uncertain coefficient
matrix C(ζ) ∈ Rm3×n3 . So, unlike the “classic” parametric method, this approach can handle
uncertainties in the coefficients of the integer “wait and see” variables. For the sake of simplicity,
we assume that the uncertain coefficient matrices to be linear in ζ and, without loss of generality,
c(x, y, z) is the certain linear objective function.

To model the adjustable RC (ARC) with integer variables, we first divide the given uncertainty
set Z into m disjoint, excluding the boundaries, subsets (Zi, i = 1, . . . ,m):

Z =
⋃

i∈{1,...,m}
Zi,

and we introduce additional integer variables zi ∈ Zn3 (i = 1, . . . ,m) that model the decision in
Zi. Then, we replicate the uncertain constraint and the objective function in (RC1) for each zi
and the uncertainty set Zi as follows:

(ARC1) max
x,y,Z,t

t

s.t. c(x, y, zi) ≥ t ∀i ∈ {1, . . . ,m} (12)
A(ζ) x+B(ζ) y +C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}.

Note that (ARC1) is more flexible than the non-adjustable RC (RC1) in selecting the values of
integer variables, since it has a specific decision zi for each subset Zi. Therefore, (ARC1) yields a
robust optimal objective that is at least as good as (RC1).

Pareto inefficiency (see Section 2.2) is also an issue in (ARC1). Hence, we must take the
individual performance of the m subsets into account to have a better understanding of the general
performance of (ARC1). Similar to Iancu and Trichakis (2014), we apply a reoptimization procedure
to improve the average performance of (ARC1). More precisely, we first solve (ARC1) and find the
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optimal objective t∗. Then, we solve the following problem:

(re-opt) max
x,y,Z,t

∑
i∈{1,...,m}

ti

s.t. ti ≥ t∗ ∀i ∈ {1, . . . ,m}
c(x, y, zi) ≥ ti ∀i ∈ {1, . . . ,m}
A(ζ) x+B(ζ) y + C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

that optimizes (i.e., maximizes) the slacks in (12), while the worst case objective value t∗ remains
the same. Note that ti’s are the additional variables associated with the objectives values of the
subsets; (re-opt) mimics a multi-objective optimization problem that assigns equal weights to each
objective, and finds Pareto efficient robust solutions.

Example

Here we compare the optimal objective values of (RC1), (ARC1), and (ARC1) with (re-opt) via
a toy example. For the sake of exposition, we exclude continuous variables in this example. The
non-adjustable RC is given as follows:

max
(w,z)∈Z3

+

5w + 3z1 + 4z2

s.t. (1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)z1 + (2 + 2ζ1)z2 ≤ 18 ∀ζ ∈ Box
(ζ1 + ζ2)w + (1− 2ζ1)z1 + (1− 2ζ1 − ζ1)z2 ≤ 16 ∀ζ ∈ Box,

(13)

where Box = {ζ : −1 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1} is the given uncertainty set, and w, z1, and z2 are
nonnegative integer variables. In addition, we assume that z1 and z2 are adjustable on ζ1; i.e., the
decision on these variables is made after ζ1 is being observed. Next, we divide the uncertainty set
into two subsets:

Z1 = {(ζ1, ζ2) : −1 ≤ ζ1 ≤ 0,−1 ≤ ζ2 ≤ 1}
Z2 = {(ζ1, ζ2) : 0 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1}.

Then ARC of (13) is:

(Ex:ARC) max
t,w,Z

t

s.t. 5w + 3zi1 + 4zi2 ≥ t ∀i ∈ {1, . . . ,m}
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18 ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ1)zi2 ≤ 16 ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

where t ∈ R, w ∈ Z+, Z ∈ Z2×m

+ , and m = 2 since we have two subsets. Table 3 presents the
optimal solutions of RC and ARC problems.

Table 3: RC vs ARC
Method Obj. w z

RC 29 1 (z1, z2) = (4, 3)
ARC 31 0 (z1

1 , z
1
2 , z

2
1 , z

2
2) = (0, 8, 5, 4)
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The numerical results show that using the adjustable reformulation we improve the objective
value of the non-adjustable problem by 7%. On the other hand, if we assume that z1 and z2 are
adjustable on ζ2 (but not on ζ1), and we modify the uncertainty subsets Z1 and Z2 accordingly,
then RC and ARC yield the same objective 29. This shows that the value of information of ζ1 is
higher than that of ζ2.

Next we compare the average performance of ARC and the second stage optimization problem
(re-opt) that is given by:

max
t,w,Z

∑
i∈{1,...,m}

ti

s.t. 5w + 3zi1 + 4zi2 ≥ ti, ti ≥ t∗ ∀i ∈ {1, . . . ,m}
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18 ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ2)zi2 ≤ 16 ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

where t ∈ Rm . For changing the number of subsets, we again split the uncertainty sets (Zi, i =
1, . . . ,m) on ζ1 but not on ζ2. The numerical results are presented in Table 4.

Table 4: ARC vs re-opt for varying number of subsets
Worst Case Obj. Values per Subset W.-C. Average

# Subsets ARC re-opt ARC re-opt

1 29 29 29 29.0
2 (32, 31*) (34, 31*) 31.5 32.5
3 (33, 30*, 32) (49, 30*, 35) 31.6 38.0
4 (33, 31*, 32, 32) (64, 34, 31*, 54) 32 45.7
5 (33, 30*, 30*, 32, 32) (80, 40, 30*, 33, 66) 31.4 49.8

8 (32, 32, 32, 34, 31*, (128, 64, 40, 34, 31* 32.5 61.833, 33, 33) 36, 54, 108)

10 (32, 32, 32, 32, 34, (160, 80, 52, 40, 34, 32.5 64.331*, 33, 33, 33, 33) 31*, 33, 45, 66, 135)
(∗) denotes the worst case (w.-c.) objective value over all subsets

The first column of the table presents the number of subsets used in ARC, and we assume
that the domain of ζ1 is divided into equally sized intervals (e.g., if the number of subsets is three,
then the intervals are −1 ≤ ζ1 ≤ −0.33,−0.33 ≤ ζ1 ≤ 0.33, and 0.33 ≤ ζ1 ≤ 1). The second
column reports objective values of the subproblems associated with the subsets in ARC. The third
column presents the objective values of the subproblems when we apply (re-opt). The fourth and
fifth columns show the averages of the results in columns two and three. As anticipated, intra row
comparisons show that ARC and (re-opt) yield the same worst case performance for a fixed number
of subsets, and (re-opt) yields significantly better average performances than ARC. Moreover, the
average performance improves with the number of subsets. Notice that the average performance
of the RC solution is not reported in Table 4 because it has the same average performance, that
is 29, for any given number of subsets. Nevertheless, it is important to see the significant average
objective value improvement made by ARC with (re-opt) for the “fixed” performance of the RC.
Last but not least, the optimal objective value 31, which is obtained when the number of subsets
is two, four, eight and ten in Table 4, is the global optimal of the ARC; for details on optimality
see the following section where this example will be revisited.
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Optimality

To quantify how far is the optimal objective value (t∗) of (ARC1) from that of the best possible
solution, we need to define an efficient lower bound (or an upper bound for a maximization problem)
for the best objective. One way of finding such a bound is by solving (RC1), where the uncertainty
set Z is replaced with a finite subset (denoted by Ẑ), and where each scenario from Ẑ has a separate
second-stage decision (Hadjiyiannis et al. 2011, Bertsimas and Georghiou 2013, Postek 2013). The
optimal objective value of such a formulation is always a lower bound for the best possible objective
value, since it is an optimal (i.e., not restricted to an affine form) adjustable solution for a smaller
uncertainty set. More precisely, the lower bound problem is given as follows:

(BRC) min
x,y,z(ζ),tlb

tlb

s.t. c(x, y, z(ζ)) ≤ tlb ∀ζ ∈ Ẑ
A(ζ) x+B(ζ) y + C(ζ) z(ζ) ≤ d ∀ζ ∈ Ẑ

where Ẑ is a finite subset of Z, as explained above. Now the question that has to be answered
is: how to construct Ẑ efficiently? Postek (2013) proposes to first find the optimal solution of
(ARC1) for a given number of subsets, and then taking Ẑ as uncertain parameters that maximizes
the left-hand side of at least one constraint. For additional details on improving the lower bound
we refer to Postek (2013, Chapter 4.2).

Example (Ex:ARC) revisited. The solution of (Ex:ARC) for two subsets (i.e., m = 2) is given
in the second row of Table 3. The associated finite “worst case” subset for this solution is Ẑ =
{(0, 1), (0,−1)}, and the upper bound for the best possible worst case objective is tub = 31 (this
is obtained by solving the upper bound reformulation of (BRC) for Ẑ). Therefore, the optimal
objective value of (Ex:ARC) is bounded above by 31 for any given number of subsets. So, the
solution found for two subsets (see Table 4) is optimal w.r.t. the worst case.

Tractability

It is important to point out that our adjustable reformulation and the “non-adjustable” RC have the
same “general” mathematical complexity, but the adjustable reformulation increases the number
of variables and constraints by a factor m (the number of subsets), so that if the number of integer
variables is high (say a few hundreds) then the resulting adjustable RC may be intractable. Dividing
the main uncertainty set Z into more subsets Zi may improve the objective value by giving more
freedom in making adjustable decisions, but the decision maker should make the tradeoff between
optimality and computational complexity.

6 Robust counterparts of equivalent deterministic problems are
not necessarily equivalent

In this section we show that the robust counterparts of equivalent deterministic problems are not
always equivalent. The message in this section is thus that one has to be careful with reformulating
optimization problems, since the corresponding robust counterparts may not be the same.

Let us start with a few simple examples. The first one is similar to the example in Ben-Tal et al.
(2009, p. 13). Consider the following constraint:

(2 + ζ)x1 ≤ 1,
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where ζ is an (uncertain) parameter. This constraint is equivalent to:{
(2 + ζ)x1 + s = 1
s ≥ 0.

However, the robust counterparts of these two constraint formulations, i.e.

(2 + ζ)x1 ≤ 1 ∀ζ : |ζ| ≤ 1, (14)

and {
(2 + ζ)x1 + s = 1 ∀ζ : |ζ| ≤ 1
s ≥ 0,

(15)

in which the uncertainty set for ζ is the set {ζ : |ζ| ≤ 1}, are not equivalent. It can easily be verified
that the feasible set for robust constraint (14) is: x1 ≤ 1/3, while for the robust constraint (15) this
is x1 = 0. The reason why (14) and (15) are not equivalent is that by adding the slack variable, the
inequality becomes an equality that has to be satisfied for all values of the uncertain parameter,
which is very restrictive. The general message is therefore: do not introduce slack variables in
uncertain constraints, unless they are adjustable like in Kuhn et al. (2011), and avoid uncertain
equalities.
Another example is the following constraint:

|x1 − ζ|+ |x2 − ζ| ≤ 2,

which is equivalent to: 

y1 + y2 ≤ 2
y1 ≥ x1 − ζ
y1 ≥ ζ − x1

y2 ≥ x2 − ζ
y2 ≥ ζ − x2.

However, the robust versions of these two formulations, namely:

|x1 − ζ|+ |x2 − ζ| ≤ 2 ∀ ζ : |ζ| ≤ 1, (16)

and: 

y1 + y2 ≤ 2
y1 ≥ x1 − ζ ∀ζ : |ζ| ≤ 1
y1 ≥ ζ − x1 ∀ζ : |ζ| ≤ 1
y2 ≥ x2 − ζ ∀ζ : |ζ| ≤ 1
y2 ≥ ζ − x2 ∀ζ : |ζ| ≤ 1,

(17)

are not equivalent. Indeed, it can easily be checked that the set of feasible solutions for (16) is
(θ,−θ), −1 ≤ θ ≤ 1, but the only feasible solution for (17) is x = (0, 0). The reason for this
is that in (17) the uncertainty is split over several constraints, and since the concept of RO is
constraint-wise, this leads to different problems, and thus different solutions. The following linear
optimization reformulation, however, is equivalent to (16):

x1 − ζ + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
x1 − ζ + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1.

(18)
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The general rule therefore is: do not split the uncertainty in one constraint over more con-
straints, unless the uncertainty is disjoint. In particular do not use “definition variables” if this
leads to such a splitting of the uncertainty.

In the remainder we give a general treatment of some often used reformulation tricks to reformulate
nonlinear problems into linear ones, and discuss whether the robust counterparts are equivalent or
not.

• Maximum function. Consider the following constraint:

a(ζ)>x+ max
k
bk(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where ζ ∈ Z is the uncertain parameter, and a(ζ), bk(ζ), and d(ζ) are parameters that
depend linearly on ζ. A more conservative reformulation for this constraint is:{

a(ζ)>x+ z ≤ d(ζ) ∀ζ ∈ Z
z ≥ bk(ζ)>x ∀k, ∀ζ ∈ Z,

since the uncertainty is split over more constraints. The exact reformulation is:

a(ζ)>x+ bk(ζ)>x ≤ d(ζ) ∀k,∀ζ ∈ Z.

Note that in many cases we have “a sum of max”:

a(ζ)>x+
∑
i

max
k
bik(ζ)>x ≤ d(ζ) ∀ζ ∈ Z.

Important examples that contain such constraints are production-inventory problems. We
refer to Gorissen and den Hertog (2012) for an elaborate treatment on exact and approximate
reformulations of such constraints.

• Absolute value function. Note that |x| = max{x,−x}, and hence this is a special case of
the max function, treated above.

• Linear fractional program. Consider the following robust linear fractional problem:
min
x

maxζ∈Z α(ζ)+c(ζ)>x
β(ζ)+d(ζ)>x

s.t.
∑
j

aijxj ≥ bi ∀i

x ≥ 0,

(19)

where α(ζ), c(ζ), β(ζ), and d(ζ) are parameters that depend linearly on ζ. Moreover, we
assume that β(ζ) + d(ζ)>x > 0, for all feasible x and for all ζ ∈ Z. For the non-robust
version one can use the Charnes-Cooper transformation that is proposed by Charnes and
Cooper (1962) to obtain an equivalent linear optimization problem. However, if we apply this
transformation to the robust version, we obtain:

min
y,t

max
ζ∈Z

α(ζ)t+ c(ζ)>y

s.t. β(ζ)t+ d(ζ)>y = 1 ∀ζ ∈ Z∑
j

aijyj ≥ bit ∀i

y ≥ 0, t ≥ 0,
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which is not equivalent to (19) since the uncertainty in the original objective is now split over
the objective and a constraint. A better way to deal with such problems is to solve the robust
linear problem 

min
x

max
ζ∈Z

[
α(ζ) + c(ζ)>x− λ

(
β(ζ) + d(ζ)>x

)]
s.t.

∑
j

aijxj ≥ bi

x ≥ 0,
for a fixed value of λ, and then find the minimal value of λ for which this optimization problem
still has a non positive optimal value. One can use for example binary search on λ to do this.
For a more detailed treatment of robust fractional problems we refer to Gorissen (2014).

• Product of binary variables. Suppose that a robust constraint contains a product of
binary variables, say xy, with x, y ∈ {0, 1}. Then one can use the standard way to linearize
this: 

z ≤ x
z ≤ y
z ≥ x+ y − 1
z ≥ 0,

and replace xy with z. One can use this reformulation since the added constraints do not
contain uncertain parameters.

• Product of binary and continuous variable. A product of a binary and a continuous
variable that occurs in a robust constraint can also be reformulated in linear constraints, in
a similar way as above. However, note that in the following robust constraint:

a(ζ)>x+ zb(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where z ∈ {0, 1}, one cannot use the standard trick:{
a(ζ)>x+ zy ≤ d(ζ) ∀ζ ∈ Z
y ≥ b(ζ)>x ∀ζ ∈ Z, (20)

and then linearize zy. This is not possible since in (20) the uncertainty is split over different
constraints. A correct reformulation is:{

a(ζ)>x+ b(ζ)>x ≤ d(ζ) +M(1− z) ζ ∈ Z
a(ζ)>x ≤ d(ζ) +Mz ζ ∈ Z, (21)

where M is a sufficiently big number.

• K out of N constraints should be satisfied. Suppose the restriction is that at least K
out of the N robust constraints

ai(ζ)>x ≤ di(ζ) ∀ζ ∈ Z (22)

should be satisfied, where i ∈ {1, . . . , N}. Then one can use the standard way
ai(ζ)>x ≤ di(ζ) +M(1− zi) ∀ζ ∈ Z,∀i∑
i

zi ≥ K

zi ∈ {0, 1} ∀i,
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where M is a sufficiently big number. However, if the restriction is that ∀ζ ∈ Z at least K
out of the N constraints should be satisfied (notice the difference with (22)), then the above
constraint-wise formulation is not equivalent and is overly conservative. We do not see how
to model such a constraint correctly. Maybe an adversarial approach could be used for such
constraints.

• If-then constraint. Since an “if-then constraint” can be modeled as an at least 1 out of 2
constraints, the above remarks hold.

Up to now we only described linear optimization examples. Similar examples can be given for
conic and nonlinear optimization. In Lobo et al. (1998) for example, many optimization problems
are given that can be modeled as conic quadratic programming problems. However, for many
of them it holds that the corresponding robust counterparts are not the same. This means that
if an optimization problem is conic quadratic representable, then the robust counterparts are not
automatically the same, and hence in such cases the robust optimization techniques for CQP cannot
be used.

7 How to deal with equality constraints?
Equality constraints containing uncertain parameters should be avoided as much as possible, since
often such constraints restrict the feasibility region drastically or even lead to infeasibility. There-
fore, the advice is: do not use slack variables unless they are adjustable, since using slack variables
leads to equality constraints; see Ben-Tal et al. (2009, Chapter 2). However, equality constraints
containing uncertain parameters cannot always be avoided. There are several ways to deal with
such uncertain equality constraints:

• In some cases it might be possible to convert the equality constraints into inequality con-
straints. An illustrating example is the transportation problem: the demand constraints can
either be formulated as equality constraints or as inequality constraints. The structure of the
problem is such that at optimality these inequalities are tight.

• The equality constraints can be used to eliminate variables. This idea is mentioned in Ben-Tal
et al. (2009). However, several questions arise. First of all, after elimination of variables and
after the resulting problem has been solved, it is unclear which values to take for the eliminated
variables, since they also depend on the uncertain parameters. This is no problem if the
eliminated variables are adjustable variables or state/analysis variables, since there is no need
to know their optimal values. A good example is the production-inventory problem for which
one can easily eliminate the state or analysis variables indicating the inventory in different time
periods. See, e.g., Ben-Tal et al. (2009). Secondly, suppose the coefficients with respect to the
variables that will be eliminated contain uncertain parameters. Eliminating such variables
leads to problems that contain non-linear uncertainty, which are much more difficult to solve.
To illustrate this, let us consider the following two constraints of an optimization problem:

ζ1x1 + x2 + x3 = 1, x1 + x2 + ζ2x3 ≤ 5,

in which ζ1 and ζ2 are uncertain parameters. Suppose that x1, x2 and x3 are all adjustable
in ζ1. Then there are three options for elimination:
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1. Elimination of x1. Let us assume that ζ1 = 0 is not in the uncertainty set. By substi-
tuting x1 = (1− x2 − x3)/ζ1 the inequality becomes:(

1− 1
ζ1

)
x2 +

(
ζ2 −

1
ζ1

)
x3 ≤ 5− 1

ζ1
.

The disadvantage of eliminating x1 is thus that the uncertainty in the inequality becomes
nonlinear.

2. Elimination of x2. By substituting x2 = 1− ζ1x1 − x3 the inequality becomes:

(1− ζ1)x1 + (ζ2 − 1)x3 ≤ 4,

which is linear in the uncertain parameters.
3. Elimination of x3. By substituting x3 = 1− ζ1x1 − x2 the inequality becomes:

(1− ζ1ζ2)x1 + (1− ζ2)x2 ≤ 5− ζ2,

which is nonlinear in the uncertain parameters. We conclude that from a computational
point of view it is more attractive to eliminate x2.

It is important to note that different choices of variables to eliminate may lead to different
optimization problems.

• If the constraint contains state or analysis variables one could make these variables adjustable
and use decision rules, thereby introducing much more flexibility. One can easily prove that
when the coefficients for such variables in the equality constraint do not contain uncertain
parameters and the equality constraint is linear in the uncertain parameters, then using
linear decision rules for such variables is equivalent to eliminating these variables. To be
more precise: suppose the linear equality constraint is

q(ζ)>x+ y = r,

where q(ζ) is linear in ζ, and y is an state or analysis variable (without loss of generality we
assume the coefficient for y is 1). Then it can easily be proven that substituting y = r−q(ζ)>x
everywhere in the problem is equivalent to using a linear decision rule for y. To reduce the
number of extra variables, it is therefore better to eliminate such variables.

8 On maximin and minimax formulations of RC
In this section, we consider an uncertain LP of the following general form:

(LP) max
x≥0
{c>x : Ax ≤ d},

where without loss of generality A is the uncertain coefficient matrix that resides in the uncertainty
set U . So the general RC is given by

(R-LP) max
x≥0
{c>x : Ax ≤ d ∀A ∈ U}.

Here we show that (R-LP) can be reformulated as:

(RF) min
A∈U

max
x≥0
{c>x : Ax ≤ d},

if the uncertainty is constraint-wise; however if this condition is not met, then (RF) may not be
equivalent to (R-LP).
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Remark 1 This shows that the statement “RO optimizes for the worst case A” is too vague. Also
the maximin reformulation:

max
x≥0

min
A∈U
{c>x : Ax ≤ d},

is usually not equivalent to (R-LP). This is because we can almost always find an x ≥ 0 such that
no A ∈ U exists for which Ax ≤ d; therefore, we minimize over an empty set, and have +∞ for
the maximin objective. Also when x is selected such that at least one feasible A exists (e.g., see
Falk (1973)), it is easy to find examples where both formulations are not equivalent.

To show (R-LP)=(RF) when the uncertainty is constraint-wise, we first take the dual of the (inside)
maximization problem of (RF) [maxx≥0 c

>x : Ax ≤ d]. Then, substituting the dual with the
primal (maximization) problem in (RF) gives:

(OC-LP) min
A∈U ,y≥0

{d>y : ATy ≥ c},

where val(OC-LP) = val(RF) holds under regularity conditions at optimality. Note that the con-
straints of (RF) can be formulated as [aTi x ≤ di,∀ai ∈ Ui, i = 1, . . . ,m], if the uncertainty is
constraint-wise. Beck and Ben-Tal (2009, Theorem 3.1) and Soyster and Murphy (2013) show that
(OC-LP)—which is the optimistic counterpart of the dual problem—is equivalent to the dual of the
general robust counterpart (R-LP), and val(OC-LP) = val(R-LP) holds for constraint-wise uncer-
tainty, and disjoint Ui’s. Therefore, val(R-LP) = val(RF) is also satisfied when the uncertainty is
constraint-wise. However, if (some of) the uncertainty at (some of) the constraints are dependent
in (R-LP), then we may not sustain the associated equivalence. The following example shows such
a situation.

Example

Consider the following toy RC example in which the uncertainty is not constraint-wise:

(RC-Toy) max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1 ∀a ∈ R
2 : ||a||2 ≤ 1,

where two constraints of the problem are dependent on each other via the ellipsoidal uncertainty
set [a ∈ R2 : ||a||2 ≤ 1]. The robust reformulation of the (RC-Toy) is as follows:

(RF-Toy) min
a:||a||2≤1

max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1,

and the optimistic counterpart (OC) of the problem is

(OC-Toy) min
x≥0, a:||a||2≤1

x1 + x2

s.t. a1x1 = 1, a2x2 = 1.

(RC-Toy) attains an optimal objective value of 2, whereas the (RF-Toy)’s optimal objective value
is 2
√

2. Therefore, the robust reformulation (RF-Toy) is not equivalent to the general RC problem
(RC-Toy) in this situation. However, val(RF-Toy) = val(OC-Toy) from duality.
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9 Quality of robust solution
In this section we describe how to assess the quality with respect to robustness of a solution based
on a simulation study. We first identify four focus points for performing a Monte Carlo experiment,
and conclude with two statistical tests that can be used to compare two solutions.

Choice of the uncertainty set. For a comparison between different solutions, it is necessary to
define an uncertainty set U that is used for evaluation. This set should reflect the real-life situation.
The uncertainty set that is used for optimization may be different than the set for evaluation. For
example, an ellipsoidal set may be used to reduce the conservatism when the real-life uncertainty is a
box, while still maintaining a large probability of constraint satisfaction (Ben-Tal et al. 2009, p. 34).

Choice of the probability distribution. A simulation requires knowledge of the probabil-
ity distribution on the uncertainty set. If this knowledge is ambiguous, it may be necessary to
verify whether the simulation results are sensitive with respect to changes in this distribution. For
example, Rozenblit (2010) performs different simulations, each based on a probability distribution
with a different skewness level.

Choice of the sampling method. For univariate random variables it is computationally easy
to draw a random sample from any given distribution. For multivariate random variables rejection
sampling can be used, but it may be inefficient depending on the shape of the uncertainty set, e.g.,
for an uncertainty set with no volume. A more efficient method for sampling from an arbitrary
continuous probability distribution is “hit and run” sampling (Bélisle et al. 1993). An R package for
uniform hit and run sampling from a convex body is also available (van Valkenhoef and Tervonen
2015).

Choice of the performance characteristics. From a mathematical point of view there is
no difference between uncertainty in the objective and uncertainty in the constraints since an un-
certain objective can always be reformulated as a certain objective and an uncertain constraint.
However, the distinction between an uncertain objective and an uncertain constraint is important
for the interpretation of a solution. First, we look at the effects of adjustable RO and reformula-
tions, then we present the performance characteristics.

Effect of adjustable RO. When one or more “wait and see” variables are modeled as adjustable
variables, uncertain parameters may enter the objective function. In that case the performance
characteristics for uncertainty in the objective become applicable.

Effect of reformulations. Reformulations are sometimes necessary to end up with a tractable model.
The evaluation should be based on the original model, since reformulations introduce additional
constraints whose violation is not necessarily a problem. Take for example an inventory model that
has constraints on variables that indicate the cost at a certain time period (e.g., constraints (23)
and (24)). These constraints have been introduced to model the costs in the objective function. A
violation of these constraints does not render the solution infeasible but does affect the objective
value (i.e., the costs of carrying out the solution).

Performance characteristics for uncertainty in the constraints. For an uncertain constraint f(a, ζ) ≤
0 for all ζ in Z, the violation is max{0, f(a, ζ)}. Meaningful statistics are the probability on posi-
tive violation and the distribution of the violation (average, worst case, standard deviation) under
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the condition that the violation is positive. When multiple constraints are uncertain, these statis-
tics can be computed per constraint. Additionally, the average number of violated constraints can
be reported.

There is a clear trade-off between the objective value and constraint violations. The difference
between the worst case objective value of the robust solution and the nominal objective value of
the nominal solution is called the price of robustness (PoR) (Bertsimas and Sim 2004). It is useful
if the objective is certain, since in that case PoR is the amount that has to be paid for being robust
against constraint violations. We observe that PoR is also used when the objective is uncertain.
We discourage this, since it compares the nominal solution in case there is no uncertainty with the
robust solution where the worst case occurs, so it compares two different scenarios.

Performance characteristics for uncertainty in the objective. Uncertainty in the objective affects the
performance of a solution. For every simulated uncertainty vector, the actual objective value can be
computed. One may be interested in the worst case, but also in the average value or the standard
deviation. For a solution that is carried out many times, reporting the average performance is jus-
tified by the law of large numbers. The worst case may be more relevant when a solution is carried
out only once or a few times, e.g., when optimizing a medical treatment plan for a single patient.
These numbers show what objective value to expect, but they do not provide enough information
about the quality of a solution since a high standard deviation is not necessarily undesirable. A
robust solution is good when it is close to the perfect hindsight (PH) solution. The PH solution is
the solution that is obtained by optimizing the decision variables for a specific uncertainty vector
as if it is fully known beforehand. This has to be done for every simulated uncertainty vector, and
yields an utopia solution. The PH solution may have a large variation, causing a high variation of
good solutions as well.

Performance characteristics for any problem. Regardless of whether the uncertainty is in the ob-
jective or in the constraints, the mean and associated standard deviation of the difference between
the actual performance of a solution and the PH solution are useful for quantifying the quality of
a solution. The mean difference between the PH solution and a fully robust solution is defined as
the price of uncertainty (PoU) by Ben-Tal et al. (2005). It is the maximum amount that a com-
pany should invest for reducing the level of uncertainty, e.g., by using more accurate forecasting
techniques. It can also be interpreted as the regret of choosing a certain solution rather than the
PH solution. Alternative names for PoU are “cost of robustness” (Gregory et al. 2011) or “price of
robustness” (Ben-Tal et al. 2004), which are less descriptive than “price of uncertainty” and may
cause confusion with price of robustness from (Bertsimas and Sim 2004). A low mean PoU and a
low standard deviation characterize a good solution.

Subtracting the mean objective value of the nominal solution from the mean value of a robust
solution yields the actual price of robustness (APoR) (Rozenblit 2010). APoR can be interpreted
as the expected price that has to be paid for using the robust solution rather than the nominal
solution, which is negative if RO offers a solution that is better on average. PoR equals APoR
when uncertainty only occurs in the constraints.

For multistage problems one may also follow a folding horizon (FH) approach. With FH in each
stage where a part of the uncertain parameter is observed, that information is used to optimize
for the remaining time periods. This is done by taking the original optimization problem, fixing
the decision variables for previous stages, and fixing the elements of the uncertain parameter that
have been observed. This allows a fair comparison between a dynamic solution (e.g., created by
the AARC) and a static solution (e.g., the nominal solution) when in real-life the static solution is
reoptimized in every stage.
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Comparing two solutions. We provide several comparison criteria and provide the correspond-
ing statistical test to verify whether one solution is better than another solution. The tests will be
demonstrated in Section 10. We will assume that the data for the statistics test is available as n
pairs (Xi, Yi) (i = 1, 2, . . . , n), where Xi and Yi are performance characteristics in the i’th simula-
tion. For uncertainty in the objective, they can be objective values whereas for uncertainty in the
constraints they can be the numbers of constraint violations or the sizes of the constraint violations.
We assume that (Xi, Yi) and (Xj , Yj) are independent if i 6= j, and that smaller values are better.
When a conjecture for a test is based on the outcome of a simulation study, the statistical test must
be performed with newly generated data to avoid statistical bias. While for the statistical tests it
is not necessary that Xi and Yi are based on the same simulated uncertainty vector ζ, it increases
the power of the test since Xi and Yi will be positively correlated. This reduces the variance of the
difference: Var(Xi − Yi) = Var(Xi) + Var(Yi)− 2 Cov(Xi, Yi), which is used in the following tests:

• The sign test for the median validates the null hypothesis that the medians of the distributions
of Xi and Yi are equal. This tests the conjecture that the probability that one solution
outperforms the other is larger than 0.5.

• The t-test for the mean validates the null hypothesis that the means of the distributions of
Xi and Yi are equal. This tests the conjecture that one solution outperforms the other in
long run average behavior.

10 RC may take better “here and now” decisions than AARC
A linear decision rule is a linear approximation of a more complicated decision rule. It dictates what
to do at each stage as a linear function of observed uncertain parameters, but it is not guaranteed
to be the optimal strategy. Every time a decision has to be made it is possible to either follow the
linear decision rule, or to reoptimize the AARC for the remaining time periods based on everything
that is observed up till then. We will refer to the latter as the AARC-FH, where FH stands for
folding horizon. Ben-Tal et al. (2005) compare the AARC with the AARC-FH, and show that the
latter produces better solutions on average. A comparison that involves AARC-FH assumes that
there is time to reoptimize. It is therefore natural to also make a comparison with the RC-FH,
where the RC is solved for the full time horizon and re-optimized for the remaining time period
every time a part of the uncertain parameters is unveiled. On average, the RC-FH may outperform
the AARC (Cohen et al. 2007, Rozenblit 2010).

In the remainder of this section we will evaluate both the average and the worst case performance
of the nominal solution with FH, the RC-FH and the AARC-FH. A comparison between RC-FH
and AARC-FH is new, and shows which model takes the best “here and now” decisions.

We first give an example for the worst case performance. Consider a warehouse that transfers
one good. The current inventory is x0 = 5, the holding costs per time period are h = 1, the
backlogging costs per time period are b = 2. In the first period, any nonnegative (not necessarily
integer) amount can be ordered while in the second period the maximum order quantity is qmax2 = 3.
Let T = {1, 2}, let qt be the order quantity in time period t, and let ct denote the costs associated
with time period t. The ending inventory can be returned to the supplier without penalty fee at
time period three. The optimization problem can be formulated as:
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min
∑
t∈T

ct

s.t. ct ≥ (x0 +
T∑
i=1

qi − di)h ∀t ∈ T (23)

ct ≥ −(x0 +
T∑
i=1

qi − di)b ∀t ∈ T (24)

q2 ≤ qmax2

qt ∈ R+ ∀t ∈ T.

Suppose the demand vector d is uncertain but is known to reside in a ball around 5 with radius 5.
We will use this uncertainty set both for optimization and for evaluation.

For this small example, it is possible to approximate the worst case costs for an FH approach
as a function of the “here and now” decision q1 as follows. For each q1 in a range of values, we have
randomly drawn 100 uncertain demand vectors from the boundary of the uncertainty set. For each
demand vector we have computed the inventory level at the beginning of the second time period
(= x0 + q1 − d1). Based on this inventory level, we reoptimized the order quantity for the second
time period, where d2 was assumed to reside in the interval [5− r, 5 + r] with r =

√
25− (d1 − 5)2

(so that the full d vector is in a ball around 5 with radius 5). Then we computed the total costs
over both time periods. The maximum total costs over all 100 demand vectors approximates the
worst case costs with the FH approach, and is depicted in Figure 1. From this picture it becomes
clear that the optimal order quantity for the first time period is approximately 2.3, which has a
worst case performance of 10.8.

We have solved the model for the full time horizon with the RC, with the AARC (where c1 and
c2 are adjustable on the full d, and q2 is adjustable on d1), and as a certain problem with d = 5.
The nominal solution gives q1 = 0, the RC gives q1 ≈ 4.4, while the AARC yields q1 ≈ 5.3, leading
to worst case costs of the FH approach of 17.8, 14.9 and 16.8, respectively. So, the RC takes the best
“here and now” decision with respect to the worst case performance. It may be paradoxical that
the AARC yields a worse solution than the RC, since the feasible region of the AARC includes the
RC solution. However, neither of the two optimize the right objective function. Both approximate
the objective value using (static or adjustable) auxiliary variables ct. While AARC indeed has a
better objective value than RC, the solution is not better for the original objective function.

We also perform a comparison on a more realistic problem, which is the retailer-supplier flexible
commitment problem by Ben-Tal et al. (2005). At the starting time, the retailer commits himself
to ordering certain quantities in later months. These commitments are flexible, i.e., deviations are
allowed at a penalty cost. The objective is to minimize the total costs for the retailer, consisting of
ordering costs (minus the salvage value), holding costs, backlogging costs, penalty costs associated
with deviating from the commitments, and costs for variability in the commitments. The article
provides two data sets for twelve time periods, A12 and W12, which we also use in our optimization
and comparison.

In this problem the retailer faces an uncertain demand. Following Ben-Tal et al. (2005) we
consider box uncertainty where the demand may deviate up to ρ% around the nominal value.
For the simulation we draw demand vectors uniformly from this box region. For these demand
vectors the nominal solution, RC and AARC are carried out completely. For the FH approach,
the reoptimization is performed after each time period based on previously observed demand.
500 demand vectors were generated for each data set and each uncertainty level ρ, and the same
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Figure 1: Approximation of the total worst case costs for an FH strategy as a function of the initial
order quantity q1.
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demand vectors were used for all models. In addition, the PH solution was computed for each of
these demand vectors.

The simulation results are listed in Tables 5 and 6. The PH solution always performs best,
but cannot be used in practice, and hence, we ignore it for now. For data set A12, the nominal
solution with FH results in the lowest average costs. This means that the nominal solution takes
better “here and now” decisions than RC and AARC. Moreover, the RC-FH has lower average
costs than the AARC-FH, so also the RC takes better “here and now” decisions than AARC.
The advantage of the nominal FH solution compared to RC-FH and AARC-FH increases when
the uncertainty set becomes larger. The same conclusions can be drawn for data set W12, except
that the nominal solution is the best solution and FH leads to higher mean costs, and except that
AARC (without folding horizon) outperforms RC. The Nominal-FH in Table 5 is an example of
the statement in Section 9 that a high standard deviation is not necessarily bad. Its standard
deviation is higher than that of AARC-FH but this is explained by the high standard deviation of
PH. In Table 6 we see that Nominal-FH has a lower mean and standard deviation than AARC-
FH, which means that Nominal-FH is closer to the PH solution than AARC-FH. For data set
A12 and ρ = 10%, it is not clear whether RC outperforms AARC. We now demonstrate the two
statistical tests from Section 9 on this data set, each based on 100 newly generated uncertainty
vectors, to test whether RC outperforms AARC. The null hypothesis that both solutions perform
equally on average is rejected (p = 4.7 · 10−12), and also the null hypothesis that the medians of
the RC and AARC are equal is rejected (p = 2.8 · 10−8). These results show that the AARC is
not necessarily better than the RC and support the statement in Section 9 that a simulation is
required for comparing solutions. As mentioned in Section 2.2, RO may provide solutions that
are not Pareto efficient when multiple optimal solutions exist. A different optimal solution to the
RC or AARC may yield completely different simulation results, rendering our conclusions useless.
We have therefore generated solutions that are robust optimal, and additionally, are optimal with
respect to the nominal demand trajectory. Although these solutions were different, the conclusions
remain unaffected.
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Table 5: Simulated mean (std) costs for the retailer-supplier flexible commitment problem.
A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 816 (35) 999 (217) 12799 (742) 16002 (3634)
RC 861 (16) 1080 (81) 13907 (275) 21564 (1415)
AARC 874 (4) 1030 (105) 13313 (35) 18577 (179)

Nominal-FH 807 (21) 967 (156) 12839 (288) 16276 (1447)
RC-FH 829 (6) 1030 (47) 13110 (56) 17578 (309)
AARC-FH 881 (4) 1063 (65) 13312 (35) 18577 (178)

PH 785 (18) 826 (95) 12187 (204) 12950 (1024)

Table 6: Simulated mean (std) PoU for the retailer-supplier flexible commitment problem.
A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 30 (25) 173 (156) 653 (597) 3053 (2979)
RC 76 (29) 253 (141) 1720 (466) 8615 (2370)
AARC 89 (16) 228 (78) 1126 (231) 5627 (1160)

Nominal-FH 22 (9) 140 (75) 653 (144) 3326 (703)
RC-FH 44 (16) 204 (103) 924 (207) 4628 (1042)
AARC-FH 95 (16) 237 (125) 1125 (232) 5527 (1161)
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11 Conclusion
In this paper, we give a concise introduction and a general procedure that shall be helpful for using
RO in practice. Additionally, we give several practical insights and hints in applying RO. Examples
of such practical insights are: the robust reformulations of equivalent deterministic optimization
problems may not be equivalent; in multi-stage optimization problems, re-optimizing the given
problem at each stage using static RO or nominal data may outperform solutions provided by ARO;
and the actual probability guarantee of an uncertainty set is often higher than the probabilistic
guarantee that is approximated by using a safe approximation technique. We also discuss many
practical issues to apply RO in a successful and convincing way. Examples are: how to choose the
uncertainty set; what is the right interpretation of “RO optimizes for the worst case”; and should
the decision rule used in ARO be a function of the final or the primitive uncertainty? Moreover,
we propose ideas on how to deal with equality constraints and integer adjustable variables, and on
how to compare the robustness characteristics of two solutions. We have provided many numerical
examples to illustrate our insights and discussions.
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