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Statistical evaluation of control inputs and eve movement

in the use of instrument clusters during aircraft landing

A, 0, Dick, John Lott Brown and George Bailey
Center for Visual Science

University of Rochester

Summary

Two different types.- of analyses were done on data from a
study in which eye movements and other variables were recorded
while four pilots executed landing sequences in a Boeing 737
simulation. Various conditioﬁs were manipulated, including

changes in turbulence, starting position, and instrumentation.

In Part I, control inputs were analyzed in the context of
the various conditions and compared against ratings of workload
obtained using the Cooper-Harper scale. The results show clear
differences as a function of conditions} manipulation; of
turbulence accounted for the major portion of the effects, A
major portiomn of the workload rating variance could be predicte:
by the anumber of control inputs. Thers was also clear evidence
for different strategies on the part of the pilots.
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In Part IT a number of eye~scanning measures including mean
dwell time and—transition from one instrument to anothar were
entered into a4 principal components factor énalysis. Eighteen
orthogonal components were retained accounting for 73% of the
variance. Factor scores were generated and entered into
discrimination analysis. In contrast to the contrel dinput
analysis, instrument changes were more easily discriminated than

turbulence., Strategy effects were also observed.

Overall the results -show a differentiation between control
inputs and eye—-scanning behavior. This shows the need for
improved definition of workload and experiments to uncover the
important differences among control ianputs, eye-scanning and

cognitive processes of the plilot.



Introduction

It is a fairly simple matter for an aeronautical engineer to
éetermine what information a pileot needs during aircraft control.
It is an entirely different matter to determine the optimal way
of presenting the information. The optimal form will depend om a
number of factors: the preferences of the operator includigg both
individual differences and common preferences developed through
experience with the airplane; ease of intervretation and
therefore usefulness of the presentation; the layout; the
conditions and situations to which the pilot must respend (the
mission); and the purpose of the pilot (whather he is responding

or controlling); the type of manuever he is performing as well as

airplane parameters and differences between aircraft,

One obvious way to arrive at optimal displays is to ask the
pilot, The problem with this approach is that the pilot cannot:
State with total ‘accuracy how he gets his information., Any
experianced pilot will, of course, understand the characteristics
0of the airplane and the demands placed on him and will have a
good idea of the relative importance of the various informational
components; In this sense, the pilet is very much 1ike the
aeronautical enginesr; accordingly any report givem by the pilot
will be a composite of what he knows is necessary and of what he
thinks he does in the cockpit (Dick & Bailey, 1976), However, as
with any skilled operation, the situational and temporal demands
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are such that the pilot does not have time to think about what he
is doing while he is doing it., By the time he could decide
action to take .at a conscious levél, an emergency situation might

lead to an unfortunate conclusion.

Examples of the intuitive approach to instrument panel
design are apparent in the typical Instrument Flight Rule
cockpit. The pilot has available at least two sources for glide
slope information, horizontal guidance, altitude, and often
airspeed, There is, of course, a difference in the form of the
information displayed - relative or absolute, raw or derivative,
predictive or current. The human, being flexible and adaptive ag
he is, can learn to deal with this array. Unfortunately he
cannot tell us accurately what he does and what information he
uses because he cannot simultaneously perform the task and think
about what he is doing. On the one hand he does not have time to
do both and on the other hand requiring him to tell us how he

does the task may change what he does.

Clearly, more sophisticated procedures are required to
monitor the pilot's performance, to study his acquisition of
information, his utilization of that information and how hard he
hag to work at this task. An important step in the study of the
information acquisition phase is the introduction of the
oculometer in flight management research (Spady & Waller, 1973,
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Waller & Wise, 1975). The oculometer provides a relatively
unobtrusive means of measuring eyve-scanning patterns while the
pilot is performing various operations. Witﬁ the oculometer it
ig possible to record in real time which instruments the pilot
looks at during various flight segments as well as to builld a
data base about the sequence and the duration of the looks. The
thrust of the approach is to determine how the pilot acquires and

uses information about wvarious states of the aircraft.

Several studies have been reported using the oculometer in a
Boeing 737 simulation to study landing approaches (Dick & Bailey,
1976: Krebs & Wingert, 1976; Spady & Waller, 1973; Waller, 19763
Haller & Wise, 1975). The approaches in these studies have
varied but basically fall into.one of two general categories.

The first iancludes data summaries of the oculometer results,
representing averages across approximately five miles of
approach. The second category represents the attempt to compare
the oculometer results against subjective reports of the pilot
which typically has involved use of the Cooper~Harper rating
scale (Cooper & Harper, 1969) as an indicator of workload. There

are, however, difficulties with both of these approaches.

The data reported are useful dut only to the extent that the
eye fixations are correlated with information utilization of the
pilot., Unfortunately, these studies have not always found
differences in frequency or duration of fixation time on various
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instruments which correlate with variations in the difficulties
of the flight conditions (e.g., Krebs & Wingert, 1976). As the
authors typically point out, these studies are but preliminary

ef forts toward understanding how the pilot functions during the

landing segment.

These analyses demonstrate the usefulness and the potential
of the oculometer in flight management research. However, they
do not .answer questions about how and when the pilot acquires
information or about how he uses that information in controlling
the airplane. The difficulty here is not in the usefulness of
the summary data but rather in the (implied) basic assumption
that evary fixation on an instrument means exactiy Fhe same thing
as every other fixation. For example, it might be reasonable to
expect that the strategy of the pilot differs for different
segments of the approach, 1In short, while it is obviously true
that fixations in general are correlated with information
acquisition, it Is also true that the correlation is far from

perfect,

Other investigaters (e.g., Senders et al., 1966) have been
concerned about the lack of a perfect correlation between eye
movements and controlling and have developed laboratory
situations in which the operator must detect a change in an
indicator, The researcher can then apply latency measures and

eye movement measures to assess the temporal difference (latency)
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between the point at which the experimenter changed the dial and
the point in time the operator indicated he obs;rved the change,
Further, eye movements can be measured to determine the scan or
search pattern in relation to such manipulations as probability
of the instrument changing, the magnpitude of change, etec, This
type of.task is basically a discrete one in as much as the
experimenter has defined the initiation of a trial based on when

the instrument was changed.

Aircraft are sufficiently more complicated than standard
laboratory procedures so as to praclude direct application of an&
approach which requires discrete tasks, There is redundancy
among the instruments in two forms: a) structuyral redundancy,
similar information from two different instruments and b) shared
or overlapping information, Because of the lack of independence
of the sources of information, different classes of information
may be obtained from the same instrument. This polnt has some
important implications for the way in which the pilot scaﬁs the

instruments.
The Present Approach

In order to improve the degree of correlation between
scanning and performance and thereby understand what the pilot
does, it is obviously necegssary to consider the task in much more
detail., This report is divided into two major sectiomns, Part I

5



deals with a preliminary analysis of control inputs; Part II
reports an analyslis of eye-gcan data, Taken together, these
analyses show how experimental manipulations of turbulence and of

instrument changes affect pilot behavior in different ways.

We begin this extension by considering the assumptions
involved in both existing and future analyses, followed by a
brief discussiog of what has been found., From this we derive
some ways in whiech the analysis can proceed , Included in the
present report is a critical review of some of the previous work,
an evaluation of the assgmptions made by various authors, and a
description and some preliminary data from two new approaches to
evaluate the function of the pilot, his informationlacquisition

and his workload,
Some Theoretical Assumptions

It is an intuitively obvious argument that eye position and
eve movements sheuld be related to behavior. The issue, however,
is complicated. 'On one side is the expectation that visual
information acquisition will be directly related to eye position.
This relaticon will be less than perfect to the extent that
peripheral vision is used, Although we know that statlc aculty
falls off markedly outside of the fovea, acuity for motion does
not fall off quite so rapidly. If the pllot uses peripheral
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vision, information acquisition will not be directly related to
eye position. Of course, the more peripheral vision is used the

smaller the relation will be.

Clearly, use of peripheral vision will contaminate the
degree to which eye position can be used to estimate information
acquisition., There is a second aspect, however, which has not
always been considered, namely that some eye movements may
reflect cerebral.or central events and activities, i.e., they are
an end product and the result of information processing, not part
of the initiation of the first stage. Hebb (1949}, for example,
has argued for this view. He suggested that learning requires
the involvement of eye movements and that this pattern of
movement is incorporated into a memory trace together with the
material which is aecquired as a3 result of the eye movement
pattern, Subsequently, when the memory trace is activated, the
eye movement pattern will also be activated with a comsequent,
almost reflexive, movement of the eyes. Because this type of eye
movement is an end product it could be used to infer mental

activities,

To test the implications of Hebb's suggestions, Bryden
(1961) attempted to assess whether accuracy in a letter
recogaition task was related to eye movements following the
letter presentation. He used a tachistoscope to present a row of
letters for 100 msec. which is too short for a voluntary eye
movement, The observers were instructed to fixate their eyes at
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a point midway between the ends of the display so movements
toward either énd could be observed. The observers were asked to
report as many of the letters as they could., Bryden analyzed-
accuracy in ferms of the number of letters cérrectly reported on
the left and right sides of the display. He found a positive but
moderate correlation between accuracy on the two halves and the
direction of the eye movement, The results appear to support the
motor ocutflow theory of ﬁebb. Similarly, comnsistent results have
been reported by Xinsbourne (e.g., 1975) who looked at the
direction of eye movements during verbal or spatial thought. The
general implication of these data for tﬁe present examination of
eye movements is that one can expect a2 less than perfect
correlation between eye movements and behavior. Clearly, some
eye movements are the result of central processes and have 10
relation to information acquistion but rather reflect information
processing and information utilization. The inclusion of such
eye movements will reduce the apparent relation between eye~scan

and information acquisition.

A third characteristic of eye movements has to do with the
task itself, The pilot's job is to watch the instruments and
make decisions at several levels. If the instrument readings are
within some acceptable éolerance‘he need deo nothing except
continue monitoring. If the instrument readings are ocutside the
acceptable range he must make some control inputs to restore
tolerance levels which in turn may lead to further monitoring
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and/or control inputs. The point is that some fixations will
lead to action and some will not, thus probably negating the
tacit assumption which has been made by treating all eye
movements alike. It is certainly worth exploring the data to
determine whether any inderlying differences exist, such as

duration or sequencing.

Finally, there seems to be an assumption about the relation
of eye and limb movements, Megaw (1973) designed an experiment
wnich required a subject tc¢ make an eye-~movement response only, a
manual response only, or a simultaneous eye and manual response,
He fouand that the simultancous condition demanded no additiomal
processing time for either eye movements or manual tracking.
Saccades were completed on the average in about 280 msec, while
manual tracking took 350 mseec. (Completion of saccade and peak
accelaration were assumed to be an estimate of the termination of
central processing.) It was also noted that most of the errors
in tracking were motor direction reversals with almost no eye
direction reversals. Megaw concludes that the eye movement and
motor systems are more or less independeﬁt with evidence that
there are two central processing modes by which either can
operate: A fast, one-direction mode which is not concermned with
the direction of response, or a slower two-directiomal modes in
wiich taere are fewer reversal errors., The degree of
independence of eye and limb movements is of considerable
importance to our understanding of how the pilot functions,
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Some Procedural Assumptions

To measure workload many investigators have used "secondary”
tasks which the pilot is to perform when he has time. There are
two problems with this approach, First, there are often
Performance trade-offs between tasks, i, e., both may suffer
performance decremeﬂt; when done together. Second, the pilot
already has two tasks to perform when he is flying the airplane

manually, eye scanning and control movements (Megaw, 1973).

Wiener (1975) has examined thig latter issue in the context
of monitoring vs. controlling, He used a monitoring task which
consisted of detection of a visual signal which occurred on the
average every one and one«half seconds interspersed with
non-target visual stimuli, A one-dimensional tracking task was
used as the secondary component in which the operator was
required to set a pointer to locate a signal which was driven by
summated sine waves. The frequency of the tracking signal
Movement was varied. Both tasks suffer when done together over
‘the individual tasks, but these differences were not related to

the frequency of performing the secondary task,

Puttiné this experiment in the context of the aircraft
problem, these results imply that a pilot may be expected to miss
s;me of the information available on the instruments when he must
control the aircraft, In short, he should be more knowledgeble
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about position parameters when using the auto-pilot. The second
aspect is that the frequency with which the signal maved in the
tracking task had no influence on accuracy in the detection task.
Both points have implications for approaches to analysis of eye
movement data and of control inputs. We will consider both
28pectsg., PFirst, we will present some preliminary data to
illustrate differences in eye movements for monitoring wvs.
controlling. Second, we will present in Part I a preliminary but
detailed analysis of control inputs to illustrate the effect of

certain types of experimental manipulations on econtrol movements.
Monitoring vs. Controlling

An oculometer study was carried out on the Piedmont
gsimulator using a number of their pilots. In this study pilots
were asked to make a number of approaches in the manual mode and
a number in the coupled (automatic) mede., Airspeed always is
under pilot control and therefore the experiment represents an
imprecise differentiation between monitoring only and monitoring
plus controlling., Nevertheless, the oculometer data are of

considerable interest,

Because airspeed is the only parameter under pilot control
in the coupled appraoch, one would expect an increase in the
percent of time the pilot looks at the airspeed indicator over
the manual case, Motor worklecad has been reduced and therefore
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the pilot has more time to pay attention to this instrument,
Even though the percent of time spenft looking at the airspeed
indicator increases, there are also increases in a number of
other instruments at the expense of the flight director., The
data are shown in Table 1. The segments in the table correspond

roughly to those shown in Figure 1 (Dick & Bailey, 1976)}.

These data show the effects of changes in motor workload on
eye-scan behavior. Generalizing from the data of Wiener (1975)
one would expect the pilot to be more sensitive to certain types
of'changes such as ailrspeed under the coupled mode than under the
manual mode. Whether this 1s true or not cannot be determined
from the present analysis. One way to find out would bhe to
measure the length of time it takes the pilot to discover a

pfoblem such as windshear.

There are also some implications for the source of the
information. Under the manual mode the pllot tends to look for
relative information from the flight director. When in thg
automatic mode he apparently is much less concerned with the
relative information and spends more time on raw data. This
result may occur because the motor workload is higher in the
manual mode, This would be a logical conclusion if it can be
shown thét it is more difficult to extract information from the
raw data instruments., When the pilot has been released from the
major portion of his controlling duties by use of the autopileot,
he has the time to dezl with these instruments.
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Table 1

Mean percent and {(standard deviations) of time

on instruments for automatic and manual £light

modes as a function of segment, Data averaged
for seven pilots in the Piedmont study.

Alr., FD Bar, HSIT VSI
Alt,
Seg. 1 11.36 67.60 6.28 6.63 4,21
: (7.85) (10.45) (4.85) (8.35) (3.26)
Seg. 2 10.08 77.04 1.67 5,68 2.64
(5.06) (12.56) (1.60) (9.81) (3.54)
Manual Seg, 3 11.92 75.34 1.27 5.91 3.75
(5.63) (9.38) (.99) (8.82) (3.24)
Seg. 4 8§.18 79.54 2,20 4,17 3.58

(6.34) (9.91) (1.72) (6.50) (4.07)

Seg. 1 19.07 49,83 6.32 11.88 4.22

(6.26) (14.10) (1.70) (8.20) (2.15)

Seg. 2 26.15 50.54 3.19 7.89 3.80

(10.03) (17.18) (2.26) (8.09) (2.97)

Automatic Sag., 3 24.72 52,30 3.90 6.60 6.52
(5.00) (13.77) (2.40) (3.35) (2.81)

Seg. 4 20.19 50.61 9.37 5.34 7.92

(10.29) (13.18) (6.84) (2.,77) (4,11}
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Alt,
.02
(.05)
.00
(0.0)
.04
(.06)
.47
(.99)

.46
(.44)
.06
(.09)
.45
(.62)
2.14
(1.86)

ADF

.88
(.97)
.80
(.83)
«20
(.10)
«25
(.26)

3.17

4.82
(7.25)

3.21
(5.33)
12.06
(1.14)
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PART I: Analysis of Control Inputs

The work of Megaw and Wiener suggests a considerable degree
of independence between eye movements and motor behavior., For
example, we may note specifically that a éhange in the freguency
of the tracking task in Wiener's experiment had no effect on
Visual target detection. Translating these findings into the
aircraft context, the implication is that eye-scan patterns could
be stable while motor behavior {control inputs) might vary. One
such example might be in heavy turbulence in which the pilot has
to make more control movements to maintain the airplane level and
on course than he does in smooth air. Although the number of

control inputs may increase with turbulence, eye-scan behavior

need not change.

Implicit in this argument is the assumption that the pilot
is always scanning the instruments at or near his capacity., If
he spends 80-907 of his time looking at the instrument cluster
essential to landing in smooth air, there is little possibility
for him to increase his time on instruments when in turbulent
air. Our own thorough univariate analysis of time on instruments
has failed to find any differences as a function of turbulence.
Similarly, Krebs and Wingert (1976) showed no relation between
eye-~scan patterns and workload rating., These findings imply that
eye~-3scan behavior i3 near saturation under normal conditions so
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that only small increases in the amount of time on instruments
are possible. Ne;ertheless, motor behavior could change. To
exémine the motor behavior component a series of statistical

analyses was carried out on the data from one pilot (Pilot #4)

who participated din the workload study on the Langley

Visual/Motion Simulator (Waller, 1976; Waller & Wise, 1973).
The Data

The data used were from the Langley Workload Study in which
there were four pilots who were tested under each of six
conditions. Table 2 lists these conditions (reproduced from
Spady and Waller, 1973), The simulated position at initiation ¢
the run was an altitude’of 1600 £feet at a distance of 33000 feet
from the end of runway. Airspeed was 120 knots.

Because there may be changes in performance as a function ¢
position on the glide slope, the f£flight path was segmented as
shown in Figure 1. Segmeunts enéed at 30,000, 23,000, 16,000,
10,000, and 4,000 feet from threshold, Normal procedure require
a pllot to make the transition to .visual guidance at an altitude
of 200 feet, and therefore the ;égments from that altitude to

threshold were set aside,

The first step in the data analysis was to determine the
number of control dinputs Pilot 4 made in the various conditions.
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Table 2
VMS Simulation Test Conditions

(from Spady & Waller, 1973)

Initizl Conditiomns

X = 33,000 ft.
Altitude = 1600 ft,

Alrspeed = 120 knots

Coaditdion Turbulence Y-position Others
Label

1 None Q o spd. cmd,
11 Hone 0
I1L None 500 ft, No cmd. bars
‘v Moderate 500 ft.

v Heavy 500 ft,. No cmd. bars
VI deavy 500 fe.
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The data were run through a series of programs developed at
Langley Research Center for conversion of the on-line recordings
into usable form. Added onto the calibration programs was a
pattern recognition program which identified the time and type of
control maneuver the pilot made. The purpose of the pattern
recognition program is to carry out analyses on control iaputs in
conjunction with the oculometer data, At the time these data
were analyzed, however, the complete package was not ready; the
program only printed out the occurence of each control input.
Subsequent tabulations were made ﬁanually to determine the number
and type of input for each of the ségments in each of the
conditions, Four categories of control input were used!

Aileron (4A)

sileron + Elevator (A + E)

Elevator (E)

Thrust (T)

The category "aileron + elevator" was forced on us by the data
because it appeared that occasionally the two events were the
result of one motor movement. Following these tabulations, the

data were subjected to several statistical procedures.

Analysis of Variance

The purpose of using analysis of wvarlance was to determine
1) if there were any significant differences in the number of
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control inputs as a function of condition each of which involves
different levels of workload and 2) if this frequency changed as
a function of the landing segment, Because pilots have indicated
that they try to do things in a particular sequence, it was
thought to be worthwhile to lock fer this possibility. The
analysis of variance is provided in Table 3. The results show
several significant effects, each of which will be discusaed in

turn.

There is a significant difference in the extent to which the
various individual controls available to the pilot are used. The
basis for the difference is sinmply that Pilot 4 uses the
ailerons much more frequently than any other control, A limited
amount of data from a second pllot shows a markedly different
pattern. A second result which is important in confirming
intuitions is the finding that there is a significant difference

in the total number of inputs as a function of the segment,

A highly important finding is the significance of the main
effect of conditions. This is the first analysis reported on
these data in which conditions can be differentiated
statistically. Again the data are consistent with what one would
expect?: the heavy turbulance conditions (¥ and VI) show the
largest number of control dinputs, as is shown in Table 4,
Extensions of the. analysis of variance were used to confirm this

—_

conelusign, It mavy be noted that the mean number of inputs does
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Table 3

Analysis of variance on control inputs for one pilot in the

Langley VMS Workload Study.

(There were five runs in each of six conditions. Each TR wWas

broken into five segments. Four categories of control were

analyzed. Entries into the analysis consisted of the number

(by type) of control inputs in each segment,)

i — bk — A ———— — T —

Runs
Type Comtrol Inputé
Error
Segments
Error
Conditions
Error
Type x Segment
Errox
Type x GCondition
Error
Segment x Condition
Erroxr
Type x Seg x Cond

Error

T A el e N tls S s s Pt Al . A S .

35 df F P
22.93
2910.80 3 226.20 .0000
51,47 12
54.39 4 8.90 .0008
24.44 16 '
556.27 5 13.87  .0000
218,17 20
120.38 12 o34 .0002
111.03 48
1138.97 15 13.83 .0000
329.37 60
57.71 20 1.39 1523
166.06 80
201.86 60 1.69 .0033
477.19 240
19
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Tahle 4
Means and standard deviations for control inputs
by conditions and segments in Langley Workload

Study for one pilot.

Type of Control Inputs

Conditions A AtE E ’ T Overall |
I 3.120 0.240 2.520 0.320 1.550
2.646 0.519 2.098 0.469 1.723
II 3.800 1.200 3.300 J.520 2.330
2.843 0.812 1.249 0.424 1.619
ITI 2.360 0.160 2.080 0.320 1.280
1.738 0,374 1.368 0.648 1.229
v 3.440 0.600 1L.720 J.480 1.560
2.349 0.632 0.927 0,600 1.336
v 10.3840 1.240 3.880 J.480 4,100
2.814 0.906 2,358 0.400 1.901
VI 3,680 1,640 3.200 0.680 3.800
3.156 1.720 2.437 0.678 2.198
Overall 53.573 0.347 2.867 0.467 2,459
2.930 0.935 1.861 0.248
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not coincide precisely with the pilot's estimate of the

workload (Table 5). Discussion of this point will be presented
later,

' The final important result ig the significance of the
interaction between the type of dinput and conditions. As can be
seen in Table 4, when turblence is heavy, the major increase in
the number of inputs occurs with the aileron, This interaction
Suggaests that the major increase in total or subjective workload
for this pilot 1s due to the necessity of working harder to keep

the plane level,.
Regression Analysis

The availabllity of the workioad ratings provides an
opportunity to examine the extent to which workload ratings are
related to the number of contrel inputs., It may be recallad that
Krebs and Wingert (1976) did not find any systematic relation

between eye-scananing behavior and workload rating in their study.

The second type of statistical analysis used was multiple
(linear) regressiom (Cohen & Cohen, 1975), It provides us with
information different from that of the analysis of variance.
#hereas the énalysis of variance tells us about differences the
regression tells us about predictabllity from the number of
control inputs onto the Cooper-Harper rating, Multiple
regression analysis determines the best linear combination of the
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Table 3

Data comparing the NASA test pilot's rating of
workload with the number of control inputs he made

during the corresponding flight conditions.

Condition Workload Mean # Control
Label Rating Inputs

I 3.0 29,8

II 2.3 49,0
I1I 4,0 25.8
v 3.5 28.4

v 7.0 78.0

Vi 5.0 68.5
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independent variables which can be used to predict the dependent
segments yielding just four values for each of the rums
available, The independent variables then consisted of the four
categories of control inputs; the dépendent variable was the

workload ratings on the conditions.

The results of this analysis are shown in Table 6. As can
be. seen in the table the number of aileron inputs accounts for
some 637 of the variance (cumulative R square). An additional
10% of the variance can be predicted when the alleron 4+ elevator
inputs are added into the equation to give a total of 73% of the
variance beling accounted for by the two variables, TQis in
itgelf is remarkable for two reasons., First the workload
scale cannot be considered to be either a ratio or interval scale
measurement; the difference between 3 and 5 is not the same as
the difference between 5 and 7). However, such an assumption
about scale is made automatically when using multiple regression.
Second, the Cooper-Harper workload rating represents more than
quantitative worklocad - note the difference in the rating

between Conditions V vs. VI in Table 5.

The following equation which represents just the
statistically significant components will account for 73% of the

variance in the Cooper-Harper ratings:

Wrk rating 1 2,46 + ,08(Ail, freq) - .16(Ail., + Elev, freq)
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Aileron

Ail, 4+ Elev,
Elevator
Thrust

Cooper Hrpr

Variable

Aileron

Ail

Ail, + Elev.

Thrust

Elevator

Table 6

Correlation Matrix

Ail + Elevw

.683

1.00

- 460

.228

. 307

Elev

Regression Results

Coef,

.088
b 197
« 160

-.013

Stan., e

of coe

.011
.058
111

.025
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£.

68.93
11.53
2.09
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.205,

+228

«232

794
«307
«224
. 105

1.00

Cumulative

R square

«631
734
«753

.756



These results may be interpreted as indicating that a sizable
portion of the workload evaluation is based on the number of
control inputs the pilot makes. This is what we called
quantitative workload and is apparently a major factor in
determining overall workload, If the workload rating were

on a ratio scale one could use the present equation tc determine
an estimate of cognitive workload, This could be done simply by
letting the number of control inputs go to zero in which case the
regression would be determined entirely by the constant, for
these conditions, 2.46, We may note that this value is similar
to the workload rating for Condition II which this pilot

considers to be the easiest,

There are other reasons for suspecting that the Cooper-
Harper workload rating does not reflect just quantitative
workload, PFor example the rating goes up when the command bars
are removed, as in Condition V as compared with Condition VI. 1In
Condition V the pilot must get his information from other

instruments which would inerease his cognitive workload,

Throughout our discussion we have emphasized the importance
of pilot strategies, To illustrate this point we will briefly
describe a limited analysis done on data from another pilot who
showed differences in the number of control inputs as a function
of conditions. For reasons not fully known, the frequency of
inputs was about 1/2 that of Pilot 4, Of more interest, the
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second pilot's strategy for controlling the airplane was quite
different, When we did the regression of control inputs against
workload rating we obtained comparable results - 71%Z of the
variance accounted for by two types‘of inputs. The control input

categories, however, were different from the previous case.

For Pilot #1:
C-H rating = 3,03 .+ ,24 (Elev. freq) ~ .38 (Thrust freq)

These results show that the worklead rating of one pilot may have
general implications for the performance of another pilot,
however, the detalls underlying the performance may differ
markedly., WNaturally, when the data from the two pilots are
combined the regression fares lesg well, a result which is to be

expected when such strong individual differences are involved.

Suppression

One f£inal point should be made about these results, There
is avidence in the data for a phenomenon called suppression.
Suppressién can occur in several ways. One of these, the so
called‘classical case, is the situation in which event A is
correlated with event B: event B is correlated with event C; but
events A and C are not correlated with each other, TFor this
exanmple, C is suppressing the degree of relation between A and B

26



by wvirtue of the fact that some of the B wvariance is common to A
and gome of the B variance is common to C, Removal of the B
Variance common with C causes the relation of A and B to be

statistically greater.

Although the situation is not dramatic 1In the present
example there'is evidence for suppression as indicated by a
positive correlation between alleron and aileron + elevator as
contrasted with the negative weight given to aileron + elevator
in the final equation for Pilot 4. This result is probably due to
the fact that the pilot cannot make baoth an aileron and an
aileron + elevator input simultaneously., This kind of "forced"
mutually exclusive event leads to the suppressing effects. Thare
is also suppression in the data of Pilot 1 but for different
reasons. Pilot 1 appears to be using the elevators and thrust as

alternate means of controlling airspeed,

Piscussion

The data speak strougly to the need for an improved,
elaborated and more precise definition of workload., A variety of
definitions have been attempted yet none are fully satisfactory.

Thne present results imply that workload is not a unitary concept.

In the present example, a major portion of the workload
rating can be predicted by the number of control inputs.
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However, there is a sizable portion left. We can get some
insignts dnto the nature of workload by examining the data in
some detail, For example, the workload rating goes up when the
command bars are removed, This can be seen in Table 35,
especially for conditions V vs VI, MNote, however, tinat the
number of control inputs does not correlate perfectly with the
rating., We suggest that the imperfect correlation (or the
residual 30Z of the variance) 1s due to a qualitatively different
component of workload which we will call "eognitive workload."”
This, of course, is a speculation and if will require more
experimentation, first to establish the differentation more
firmly and second to establish better indices of the relative

contribution of the two components,

Roughly speaking, one part of worklead is related to the,
motor system, i.e. the number of control inputs required to
control the airecraft, The.other part is imperfectly represented
by eye-scan behavior in a manner parallel to Hebb's suggestion
that eye movements may refleet central (cortical) activity,
Apparently in the Langley VHMS the major changes in the motor
systen come about as the regult of manipulation in turbulence.
(As we shall see later the situation is different for eye-scan;
the most prominent differences come about as the result of

instrument changes.)
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The dissociation of workload into two qualitatively
different components is reasonable in the context of Megaw's
£1973) datg. Because of thé Considerable degree of independence
between motor behavior and eye-scanning it is not surprising to
find that eye-scanning behavior is relatively constant while

control inputs change as a function of turbulence.

Despite the compelling aspects of the data, it is equally
reasonable to suggest the two systems cannot be totally
independent as evidenced in the manual and compiled data, After
all, a major portion of the information a pilot receives is
througihh his scanning of the instruments. It becomes critical
therefore that the relation between control inputs and eye-scan
behavior be analyzed. A thorough analysis will not only yield
information about how the pilot acquires information but also
provide background about the trade-off between the two Lypes of

workload we nave defined,
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PART I1: Evaluation of Eye~Scan Data

As we indicated earlier, univariate analyses did not yield
any significant findings in the e2ye movement data. Accordingly,
we adopted a set of multivariate procedures which are more
complicated but also more appropriate. Because these procedures
have not been used frequently in human factors research, we will
devote some discussion to an iuntroduction of the procedures. The
present discussion of the factor analysis technique is entirely
intuitive. Readers wishing more detail are advised to consult
Harmon (1967) for a thorough presentation or Kroth (1375) or

Rummel (1967) for an introduction.

Factor Analysis

When considering any set of empirical data there 1s usually
more tnan one way to analyze and to descfibe the data adeguately
just as thgre is usually more than one useful theory. Although
factor analytic procedures have typically been used in behavioral
sciences and Fourier analysis in engineering, there is no
particular reason why this need be the case., The major
difference between the mathematics underlying factor analysis and
frequency analysis is the %asic equations., There are generally
some assumptions made in frequency analysis whichh azre not made in
factor analysis. Both, however, assume linearity which can be

accomplished by data transformations if necessary. They may be
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considered as alternate techniques to evaluate the same data. As
with moét alternatives there are some advantages and
disadvantages associated with each, depgénding upon the purpose of
the iavestigator. In engineering terms, factor amalysis is akin
to quantum theory (Rummel, 1967) whereas frequency analysis is
derived from calculus. Several inﬁestigators {e.g. Clement, et
al, 1971; Senders et al. 1966) have developed theories of display
design and eye movement behavior and then determined the degree
of fit between the theory and the émpirical obgervation, In both
cases the fit between the model and the eye movement data is
quite good, however, their procedures require several assumptions
which apparently nave not been evaluated. For example, Senders
et al., (1966) used time on instruments without worrying about
linking (transition) probabilities; Clement‘et al., (1971),
although they congidered linking probabilities, did not take iato
account what happens when the instruments are redundant and
overlapping. Becéuse factor analysis is a technique designed
specifically to deal with correlation (covariance), it is
especially useful for examining rédundancies and comes closer to
the Senders et al. (1969) ideas on queueing theory than to other

models.
A Brief Description of Factor Analysis
In large part, factor analysis is a descriptive procedure in

which a primary aim is parsimony, A major function of thne
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analysis is to reduce a large set of variables to a smaller set
of factors or components each of which is related to cna or more

of the original variables., Xt usually involves the simplest

mathematical model, a linear one, which takes the form:

Z = A F + A F +... + A F (1)

[

jl 1 j2 2 j¥ n

™
I

dnere the original wariable to be approximated,

1,n the number of original variables,

[}
]

Aj.

a welight applied to the factor,

F. = nev unrelated or othogonal components,

An important
turn makes a

n variables.

property of tihe method is that each component in

maximum contribution to the sum of

_Although technically n components

reproduce the correlations among the wvariables,

1/3 or less are required to acecdunt for a major

variances of the
are required to
in practice only

portion of the

variance. The solution is accomplished by analysis of the

correlations among the wvariables.

Readers familiar with linear regression will see immediate
similarities between the equation and the generalized regression
expression, That is, whereas in regression the evaluation is om
each variable separately, factor analysis first groups like
variables into a combined component and then uses these
mathematically defined components to provide the linear equation.
In regression the idea is to maximize variance accounted for,

whereas in factor analytic teciniques the idea is to maximize
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variance accounted for and simultaneously to reduce the number of
variables, In the analysis to be discussed we started with
seventy variables and retained eighteen components while
accounting for slightly more than 707 of the variance in the data

matri;.

Because there exists a number of models of factor analysis
it is important to specify the details, The particular factor
analytic model used was principal components analysis (Dixon,
1975)., ©Other models will not necessarily provide identical
solutions. A feature of principal components is that the first
component extracted accounts for the largest percentage of
variance with each successive factor accounting for a lesser
percentage., A second feature is that the main diagonal of the
correlation matrix i1s composed of 1.0's, that is, a variable is
assumed to be perfectly correlated with ftself., A third feature
is the orthogonality (independence) among the resulting
components. The cutoff point or thé decision to stop generating
additional components is Kaiser's Eigenvalue = 1,0 rule, which
when used does not permit a component to account for less
variance than would bé contributed theoretically by any one
variable. Of great importance, a Varimax rotation was used which
retains orthogonality among tha conmponents. Rotation has the
feature of increasing interpretability by adjusting the loadings
gso each component is as mathematically close as possible to one
of the axes in n—dimengional space, It optimizes the uniqueness
of each component,
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Reasons for Application

One of our prime goals is to reduce the number of variables.
We have, of course, no a priori assurance about the existence of
a simplexr, latent structure in the data but if one exists the
analysis will be useful in helping te uncover it, A second
reason for using the techanique is to determine some of the
characteristics about the relations among the various

3

instruments; specifically we want to examine how the pilot uses

H

the redundant instrument information available to nim.

A third and more general reason which encompasses the first
two is in the context of theoretical development., As a long term
goal we want to be able to speclify what the pilot does to acquire
and utilize information. One such attempt to do this is embodied
in the use ¢f the workload ratings on workload. 1In Part I
We showed that the workload rating could be predicted better by
the number of controls inputs than by specific use of
instruments, (Krebs & Wingert, 1976). In a different approach
(Dick & Bailey, 1976) pilots rated the iastruments in order of
use, Although they were quite consistent in what they said about
the instruments, their ratings did not correlate well with‘
objective (oculometer) measures on the nercent of time they
looked at the instruments. One need not look far for an
explanation of why comparisons of wverbal repor:ts and eye

34



movements have not fared well, The pilot must control the
alreraft in a number of dimensions simuléaneously;'he can deal
with these parameters ovne at a time, two at a time or even three
at a tiﬁe. For example, he could be concerned with being on the
glide slope or he could be concerned with both vertical and
horizontal position depending on where he is on the glide péth,
wind conditions, etc. To complicate the Iissue further once he
has "set up" or bProught a primary concern under control, a pilot
can monitor in a secondary manner by making sure other parameters
remain under control., The interactive effects between the
parameters permit him to use ilnstruments in an analogous
interactive manner., Concern about two parameters simultaneously
may require a different use'of the instyuments than concern abqut
elither parameter individually. Use of ounly .percent time on
instruments automatically eliminates even the possibility for
discovery of coordination among parameters, Their discovery

requires analysis of correlation,
The Data

The data used were from the Langley Workload Study in which
four pilots ﬁere tested under each of six conditions. Table 2
lists these conditions (reproduced from Spady and Waller, 1973).
The simulated position aé initiation of the run was an altitude
of 1600 feet at a distance of 33300 feet from the end of runway.
Airspeed was 120 knots. A total of 205 approaches was usead,
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Ihe oculometer data were transformed into "look points™ or
instrument positiong using pfograms developed at the Human
Factors and Simulation Branch at Langley Research Center.
Retained in the data transformations were the "from/to"
characteristicse or linking probabilities of eye-scan patterns. A
preliminary analysis showed scome cells to be 0.0 in all
positions; these were accordingly discarded. Those not used are
indicated in the table. There are two reasons why a variable may
be 0.3: 1) the pilot does not use that combination of instruments
and 2} the data analysis routines which convert the oculometer
data into look points will eclassify a transition through an

intermediate instrument into another category.

Becausze the flight director contains several sepsarate
instruments, this instrument was separated out and broken down
into the spatial arrangement shown in Figure 2, The reader may
wish to note that some of the transition probabilities from an
empty cell to other cells in the f£light director were discarded.
In addition, mean dwell times were avallable. This measure
ignores where the eye was previously; that is, the from
component, and giveg average time spent on each ianstrument,
Finally, the standard deviation of dwell time was available and

used because of its independence from mean dwell times,

Because it wag felt that there may be some changes in the
pattern of eye movements as a functlon of position on the glide
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slope, the flight path was segmented as shown in Figure 1.
Hormal procedure requires a pilot to transition to visual
guidance at an altitude of 209 feet; therefore the final segments
from 4000 feet to threshold were set aside., Aircraft position
was obtained at the end of each segment; the parameters used
were}

Altditude

Distance from Center Line

Localizer Error

Glide Slope Error

Airspeed

The complete list of variables was composed of 96 different
observations and is given in Appendix A. This list was reduced

to 70 by eliminating variables which were consistently zero,

Results

The major results are shown in Table 7 which lists the
organization of the variables into orthogonal components. In the
table only the primary loadings are shownj; only 66 of the 70
variables showed loadings of .40 or better, BSome of the
variables displayed secondary (smaller) loadings on other
components but these have been ignored in the table, The
complete factor loading tables are provided in Appendix B.
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in the heading.

factor loadings.

Component 1

Table 7

An abbreviated factor loading table.

membership in the factorial cluster,

of the variable with the component.)

The variables are grouped according to their primary
A suggested label
the percent of variance accounted for (related) is provided
The numerical entries are the rotated

(The loading is-a correlation coefficient

The caomplete. table of

factor loadings is given in Appendix B,’

Y i it o b S Sy S Sy S Sy A = ————— - —

Rate of Climb- - Rate of Climb
Flight Director - Rate of Climb

Rate of Climb - Flight Director

Stand. Dev. Rate of Climb

Mean Dwell Rate of Climb

Component 2 "Airspeed I"

L — —— D — o —— T ——— —— ——— i Y . o ——— -y -

Airspeaed -~ Airspeed

Flight Director -~ Airspeed
Airspeed - Flight Director
Mean Dwell Airspeed

Stand. Dev. Airspeed
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"VYertical Velocity"

.895

.3891

.828

. 784

. 939
«919
913
.868

+848



Component 3 "Vertical Guidance" 6.3%

. T —— T —— — ] — T m— 000 a SOR S S —— T — Ly T — T —— T b Tl . e —— .

Glide Slope - Glide Slope »881
Stan. Dev. Glide Slope .857
Mean Dwell  Glide Slope .823
Glide Slope -~ Command Bars .811
Command Bars - Glide Slope ’ .790
Component 4 . "Monitoring" 5.4%
Speed Bug =~ Command Bars .795
Flight Director - Altimeter .793
Command Bars - Speed Bug . 787
Altimeter - Flight Director 778
Localizer - Glide Slope «519
Component 5 "Roll" ' 5.4%
Roll - Roll .908
Rell - Command Bars .875
Command Bars - Roll . 869
Stand. Dev, Roll 785
Mean Dwell Reoll « 715
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Component 6 "Horizontal Situation” 5.2%

Stand. Dev, HSI 854
HSTI - HST ‘ . 8483
Mean Dwell HST 799
Flight Director - HST .667
HSI ~ Flight Director .655
Component 7 "Flight Directoxr"” 4.97
Flight Director . Mean Dwell 773
Command Bars Stand. Dev. 741
Flight Director Stand. Dev. .699
Command Bars Mean Dwell 690

Flight Director - Flight Director 544

Command Bars - Command Bars .542
Component 8 "Localizer" 4.7%
Localizer - Localizer .782
Localizer Mean Dwell .767
Localizer Stand.. Dev. 5647
Localizer = 7 .613
Localizer -~ 9 .505
Speed Bug ~ 7 . 503
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Component 9 "Afirspeed IT - Relative™ 4.67

Speed Bug Mean Dwell .899

Speed Bug Stand. Dev. .899
Speed Bug - Speed Bug © « 865
Component 10 TAltitude™ 4.17%
Altimeter - Altimeter «372 -
Altimeter Stand. Dev. .787
Altimeter Mean Dwell .738
Component 11 "angle and Speed of 3.2%

Approach"
HSI - Rate of Climb .788
Rate of Climb - HSI . 758

HSI = Airspeed 514

Component 12 M"Flight Path Deviation I" 3,07

s e A S A Y S i Sy L (e S Yl S S oy el S i S ke b S s S

Distance from center line .948

ﬁocalizer error 947

Component 13 "Horizontal and Height® 2,5%

. —— ) v ——— S T —— — —— . — -y S e S

Altimeter - HSI .738

HST = Altimeter .692 -
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Gomponent 14 "Flight Path Deviatiom IL" 2.2%

- -
-~ S it o el S — D Sy w—y T Tt — Ay p———— = . — Sy w——

Glide slope error « 779
Aircraft Airspeed -.709
Component 15 "Relative Angle and Rate" 2.17%
Localizer - Speed Bug 766
Glide Slope ~ Localizer + 745
Comp. 16 ‘“"Vertical/Horizontal Guidance" 2.0%
Glide S5lope - Localizer 628
Locajizer - Command Bars .403
Command Bars - Localizer 447
Component L7 "Glide Slope Acquisitionm" 1.9%
Roll to 3 . 815
Glide Slope ~ 3 «305
Component 18 "Rata of Descent” 1.6%
Rate of Climb - Airspeed .598
Rate of Climb - Altimeter = 445
Totzl variance i 72.7%



We will not discuss each and every component because the
interpretation of the components is, in most cases,
straightforward, Let us consider the first component as an
example, We have labeled it "Vertical Velocity" as a result of
the heavy emphasis on rate of climb., There are several

interesting characterisgstics in this component. First, not all of

the transition measures on rate of climb enter inteo the
component, Second, the flight director fits because it provides

pitech information, but note the absence of airspeed.

Generally, we may note that the ordering of the components
does not reflect time on instruments in any straightforward
manner, This result occurs because factor analysis maximizes the
variance accounted for; obviously, the wvariance 1s unot
necessarily related to the percent of time on each instrument,
The components appear in most cases to be related to the pilot's

concerns in landing the airecraft,

To understand the results more fully in terms of their
generalizability we need to consider a number of issues. The
first is the task itsgself, In four out of the six conditions the
initial gtarting point 1is 500 ft, off the centerline. Thils
experimental condition results in Component 5, "Roll." Without
the offset, the roll indicator would not be an important
consideration and probably would not appear as a component 1f the
situation did not include the offset., Similarly, Component 6,
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"Horizontal Situation," plays an important part in later analyses
for the same reasons. It stands to reason, of course, that the
results are only as représéntative as the task which produced the

data.

Another point has to de with the treatment of the data which
will translate through to the interpretation., To illustrate
this, let us consider Component 17 which we labeled "Glide Slope
Acquisition.,”" The issue involves the definition of the boundries
of the instruments and theilr spatial arrangement., It is
reasonable, of ccurse, to expect the plleot to be concermed with
roll as part bf glide slope acquilsition so that he can bring the
airplane into the proper position. Wanen considering the spatial
arrangment of these two instruments in the flight director
(Figure 2)Awé see that the pilot has two routes between cells 2
and 6 (roll and glide slope respectively). He can transition
through 3 which is empty or e can go through 5 which contains
the command bars, With the present data reduction procedures, -
all we can say about Component 17 4is that it 1is probably an
underestimate of the pilot's concern with glide slope
acquisitién. That is, any transitions between 2 and 6 which
happen to go through cell 5 will be counted as two transitions,

2-3 and 5«6 and will end up in Components 3 and 5., Thus the

‘‘‘‘‘

magnitude of the'components will be influenced by assumptions in
data analysis about the sgize of instruments.
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Tiie role of the command bars 1s problematical, The term as
used here denotes a physical location on the instrument panel but
this physical location actually contains two ingtruments so it
cannot be determined precisely which the pilot i1is using when he
looks at that position, The command bars enter Components 3 and -
4, Because of the different characteristics of the two
components, however, it is unlikely that the same meaning should
be attached to the scanning behavior for these and other

components,

A final point which needs to be drawn out is the relation
between the components as yislded by factor analysls and the per
cent of time on instruments. The per cent of time on instruments
loses ite impact in factor analysis because all measures are
normalized prior to factor analysis. Thus these difference have
been removed, Although it could be argued that such differences
should be laft in the analysils, let us consider the case for
their removal. Early eye movemeni studies showed that the
optimal look-point was in the middle of the display, which in the
present study, happens to be the flight director. (Although the
data are from a different study, the manual condition shown in
Table 1 13 representative of the amount of time the pilot spends
on the flight director.) The amount of time on instruments is
partially confounded -~ it represents more than just information
acquisition, By normalizing, the importance of unwanted
contributions is reduced, although not eliminated. An even more
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telling argument is the relatively unsuccessful attempt to usea

raw measures involving time on instruments to predict workload

{e.g., Xrebs & Wingert, 1976),
Instrument Redundancy

Most previous analyses have emphasized time on individual
instruments. By definition, the approach ignores the existence of
redundancy -~ there is more than omne source for the same
information. A major benefit of the correlational analysis is in
the result that the structurally redundant instruments are not
always used in a coordinated fashion. If a pilot used a relative
instrument to decide to look at a raw ianstrument, we should see
components which contain both, The components are orthogonal and
therefore there cannot bé large correlaticns between thesge
instruments or they would have ended up in the same component.,

It appears therefore the pilots treat them independently. For
example, compare Componént 2 with Component 9 (Airspeed I vs

Airspeed I1).
Interpretation

Winat about the utility of these components? What do they
tell us about how the pilot operates the airecraft? To evaluate
these questions, factor scores were generated and used in
digscriminant analysis. Factor scores represent normalized
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composites of each of the 70 variables mapped onto the eighteen
components. The primary emphasis in Factor Score 1 will be
Vertical velocity; Factor Score 2, airspeed; etc, These scores
were generated by the factor analysis program and written on tape

for later use in digcriminant analysis.

Discriminant Analysis

A statistical procedure which. does not appear to have been
used in human performance is that of discriminant analysis. The
procedure is similar in some ways to signal detecticn theory and
is related to multiﬁle regression and analysis of variance, In
effect, discriminant analygis allows us to develop decisiomn rules
(or equations) based on the data and further permits us to

evaluate the usefulness of the rules,

In the present situation, the independent variables
consisted of the factor components and the data values were the
factor scores, Accordingly, one way to view the analysis is in
terms cf evaluation of the usefulness of the factor components
generated from oculometer data. Several group classifications
(dependent variables) were possible; the factor scores were
labeled according to pilot, segment, and condition. Accordingly,
gseveral different discriminant analyses were run and each will be
discussed in turn.
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Step-wise digcriminant analysis was used but in a
simultaneous-fashion-(Dixon, 1975), The advantagé of this
procedure is the sequential output} the reéults are printed as
the variables are entered with the ordering being ‘determined by
. the statistical significance of the individual variables. One
can then examine how the equation develops and see the
contributions of each wvariable in turn including the possibility
of suppression. Although it is not possible to present all of
the results from this procedure we have preserved as nmuch as

possible,
Rasults

As with the factor analysis results, it is not our intention
to discuss each and every significant point. Rather our intent
is to discuss some of the interesting results partly to
illustrate the usefulness of the technique and part%y as a
tutorial exercise so the interested reader can pursue the

remainder as he wishes,
Pilots

Because of their varied experience, the first question to be
answered was, Do pilots differ? The answer is yes., Table 8
shows the classification matrix which resulted from inclusion of
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Table 8

Pilot Classification Matrix

Number of Cases

Clagsified by Equation

Original Percent Pilot

"Group" Correct 1 2 3 4 N
Pilot 1 73.0 208 10 38 30 285
Pilot 2 80.4 15 235 1 34 264
Pilot 3 93.7 7 8 239 1 255
Pilot 4 84.8 6 25 4 195 230
Total 82.5 236 247 282 260 1025

The entries are F ratios and provide amn index

of the distance between pairings.

Degrees of Freedom = 18,

Pilot 2

Pilot 3

Pilot 4

Pilot 1
57.37
56.10

48.99

49

Pilot 2

107.07

26,15

1094

Pilot 3

104,22



all the factor components in the analysis. The presentation in
the table is readily understandable, The labels down the side
represent the objective categories (pilots) wﬁiéh were entered
into the computer program., The labels across the top represent
the categories as calculated by the equations. The entries are
frequencies, The main diagonal represents the number of times
the equgtions were able to categorize correctly., The lower half
of Table 8 provides a matrix which gives F ratios calculated
between all pairings of two pilots. The entries can be used as

an index of the distance {or difference) between any two pilots.

Table 9 provides the classification functions £for the pilots
by the components, The F wvalues are multivariate and provide an
index of the relative importance of the components fof making the
discriminatioﬁ given the preceeding components. From the table
it can be seen that the plilots differ significantly on all
Components except for 17 and 18, The most important in terms of
the F ratios (where the pllots differ most) are Vertical

Velocity, Vértical Guidance and Horizental Situatdon.

By studying the patterns of the normalized coefficients one
can detect a considerable diversity among the welghtings each
pilot applies to the instruments. We may recall the differences
in the two multiple regression functions derived £f£rom the control
input analysis. Pilot 4 (for whom we had the most data) shows a
positive weighting on Horizontal Situation and a negative
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10
11
12
13
14
15
16
17

13

Pilot Classification Functiocns

Table 9

The Entries are Wormalized Coefficients

Factor

Vertical Veloecity
Ajrspeed I

Vertical Guidance
Monitoring

Roll

Horizontal Situation
Flight Director
Localizer

Atrspeed II-Relative
Altitude

Angle & Speed of App.
Flight Path Dev, I
Horizontal & Height

Flight Path Dev. II

Relat. Angle & Rate

Vert.,/Horiz. Guid.
Glide Slope Acg.
Rate of Descent

CONS TANT

-1.73
0.24

-1.33

-3.05

51

Pilot

-1.40
-0,43
-1.41
0.27
0.60

-0.12

F to

. Remove

DF=3,1004

304,28
12,21
202,83
83.36
56.81
116.01
86,04
13.72
106.76
21,01
26,00
35.89
36.89
14,49
36.86
32,21
2,04

2.73



weighting on Vertical Velocity. He was the pilot who used the
ailerons a great deal. In contrast, Pilet 1 who used primarily
elevators shows a positive welght for Vertical Veloecity and an
indifferent one for Horizontal Situation. The data show
consistency between the control inputs and the eye movements and
emphasize pilot differences. The patterning of eye movements

differs among pilots as does the use of controls,

Segments

The factor scores were entered into discriminant analysis
as a function of segments, The classification matrix in Table 10
shows not only that the discriminant analysis did not fare as
well (53%, chance = 20%) as for pilots but also why. The
selection of the cut points for segments 1is entirely arbltrary
from the pilogs point of view; his task is, after all, a
continuous one. Priorities change over the flight path but there
are 1o clear boundaries and accordingly misclassifications are
likely to occur between adjacent segments. The main
characteristics of Table 10 are recast in Table 11 to show the

frequency of mistakes between adjacent and nonadjacent segments,

Table 12 provides the complete set of coefficients for the
classification functions together with F values for significance,
The results can be interpreted simply: there are some systematic
changes in eye—scanning as a function of glide slope segment,
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Table

190

Segment Classification Matrix

Percent

Original Number of Cagzeg Classified into Gréup

"Group" Correct by Equation

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5
Seg 1 80.5 165 25 6 4 5
Seg 2 52.2 29 107 42 19 8
Seg 3 32.2 17 51 66 44 27
Seg 4 50,2 11 9 29 193 53
Sag 5 49.8 2 ) 29 66 102
Total 53.0 224 198 172 195

236

The entries are F ratios and provide an index

Seg

Seg

Seg

of the distance between nairings.

Degrees of Freedom

Seg 1
16.11
21.23
33.61

48,63

Seg 2

18, 1003

Seg 3

Seg 4



Table 11

Evaluation of Misclassification of Segments

Number of Number A Total % Misclass.
Cells of Cases
Adjacent 8 339. 33 70
Segments
Non~adjacent 12 143 14 30
Segments
Correct 5 (543) 53 -
Total 25 1025 100 100
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19
i1
12
i3
14
15
16
17

18

Table 12

Segment Classification Functions

The Entries are

Factor

Vertical Veloecity
Alrspeed T

Vaertical Guidance
Monitoring

Roll

Horizontal Situation
Flight Director
Localizer

Airspeed II-Relative
Altitude

Angle & Speed of App.
Flight Path Dev, I
Horizontal & Height
Flight Path Dev., II
Relat, Angle & Rate
Vert./Horiz. Guid.
Glide Slope Acq.
Rate of Descent

CONSTANT

-0.30

i1.12

-0.29

-0.44
-0.34
-0.15
-0.04
«0,49

-3.06

Normalized Coefficients

"0 .04
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Remove
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However, these changes occur gradually and do not always occur at
precisely the same point which produces the difficulty in

discriminating the -adjacent segments.

More detailed comparisons show that components, in order of

importance, are the major components which permit discrimination:

14 - Flight path deviation -.II (localizer error, X(95)),
1l - Vertical‘velocity
12 - ©Flight path deviation - I (Glide slope error, X(94)
and aircraft airspeed, X(96))
8 = Airspeed I1 - Relative
5 - Roll

18 = Rate of descent

The other components do not coantribute as greatly. We may note
that Flight Path Deviation - I and Roll result £from the 500'
offset for Conditions III through VI (Table 2). This 1is the only
discriminant analysis in which aircraft position parametexrs

(Components 14 and 12) play a role in the discrimination,.

Conditdions

The third and most interesting way of looking at the factor
scores is in terms of conditions. Table 13 shows the
classification matrix resulting from entry of all eighteen
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Table 13

Condition Classification Matrix

Original Percent Number of Cases Clagssified by Equation
Group Correct into Condition

T II IIT v v Vi
Cond 1 91.5 151 10 0 3 0 1
Cond II 72.7 10 160 5 36 5 4
Cond III 65.0 1 3 91 12 19 14
Cond IV 64,7 4 29 15 110 . 1 11
Cond V 59.4 1 1 38 23 104 8
Cond VI 52.3 1 11 2 48 12 31
Total 68.0 168 214 151 232 141 119

The entries are F ratios and provide an index
of the distance between pairings.

Degrees of Freedom = 18, 1002

Condition
I II 111 v v
Cond II 83.67
Cond III 127.96 38.45
Cond IV 111.62 14,08 29.53
Cond V ©150.99. 48,55 9,13 24.74
Cond VI 115.83 31.46 31,65 12,66 21.6%9
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components. Overall, 68.07 of the cases were correctly

classified (chance = 17%).

Tne ability of the discriminant analysis to categorize the
conditions fits with changes in instrumentation but is more
poorly related to turbulence. Condition I (without the speed
bug) loads heavily on the "Airspeed" component (after this
variable is entered most of the Condition 1 cases are correctly
categorized.) Conditions III vs., V present some difficulties as
do Conditions IV vs. VI; the command bars are out for Conditions

IIT and V and are in for IV and VI.

Table 14 shnows the normalized coefficients for the
classification functions. The strongest discriminating component
is "Airspeed I'" which shows a positive weight for Condition I.
The absence éf the speed bug fo¥ces the pilot to use the airspesad
indicator, For these same reascons, this component does not
discriminate well between Cénditions IIT and V or between 1V and
VIi. The second strongest is "Horizontal Situation" which has a
similar difficulty with III vs, V and IV vs, VI. Within the
pairings they differ only in the amount of turbulence. Between
the pairings, the difference 1s the presence or absence of the
command bars., The difficult~to- discriminate conditions using
eye-scan data are precisely those which are easy to discriminate
in terms of number of control inputs and workload ratings,
Reasonably accurate categorization of the difficult pairs is
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i0
11
12
13
14
15
16
17

18

Condition Classification Functions

Table 14

The Entries are Normalized Coefficients

Factor

Vertical Veloecity
Airgpeed L

Vertical Guidance
Monitoring

Roll

Horizontal Situation
Flight Director
Localizer -
Airspeed II-Relative
Altitude

Angle & Speed of App.
Flight Path Dev, T
Horizontal & Height
Flight Path Dev. 1II
Relat. Angle & Rate
Vert./Horiz. Guid.
Glide Slope Acq.
Rate of Descent

CONSTANT

II

-0 008
-0'l03

-2.75
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Condition
ITI v
~0.53 -0.33
—é.13 -1,53

0.83 -0,05

0.59 0,14

0.08 =-0,07

2,42 -0,638
-0.,87 =~0,05

0.24 -0,47
-0.27 .73
-0.26 -0,21

.00 «0.08
-3.25 -0,02

0.12 -0.,20
-0,02 <-0.02
-0.16 0.20

0.26 =-0,17

0.16 =0.13
~0.04 0.00
-3.98 -~2.,64

-0.01
-Onlo

-3.79

F to
VI Remove
DF=5,1002
-0.24 19.14
-1.87 559.70
-0.85 31.91
-0.15 16,80
0.02 9.76
~0.29 173.50
-1,01 88,51
0.25 2.97
0.50 44,78
-0.42 11.20
0.47 7.53
0.85 18,45
0.45 10.47
-0.29 11.54
0.08 4,66
-0.39 6.66
-0.10 1.52
-0.08 0.68
-3.25



44 nODUCIBILITY OF oy
ARIGINAL PAGE IS POOR

possible, but it takes a number of components to do the job, The
strongest of these are 7, 9, and 3 in order of significance. The‘
labels attached to these are "Flight Director", "Relative
Airspeed", and "Vertical Guidance"., Overall the discrimination
among the conditions is good; this is the result of consistency
among the pilots im spite of the fact that the pilots themselves

show differences.
Conditions and Pilots Together

Individual ddiscriminant analyseé were done on pilots,
conditions and segments. To evaluate how the components relate
to the three classification schemes we rank ordered the‘
components by means of thelr relative importance (F ratios) in
the classification functions (fables 3, 12, and 14). Spéarman
rho correlations were then done on the th;eé possible pairings.
The ordering of the components for segments was unrelated to
pilots (rho = -.04) or to conditions (rho = =-.08). Pilots and
conditions, however, showed a significant correlation omn the
relative importance of the components (rho = ,54; .05 % p % .01,

one—~tailed),

Accordingly, one other analysis was run. The intent was to
determine to what extent predictability can be improved among
conditions by the comnsideration of pilots. We presented some
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evidence in an earlier section showing results on two pilots who
use different strategies in controlling the airplane. Such a
strategy difference might be reflected in the use of instruments.
By considering both pilots and conditions together we can
determine the extent to ﬁhich strategies contribute to the

condition classification errors.

Factor scores were used again, this time with 24 "groups"
(the product of 4 pilots by 6 conditioms). The table associated
with the results has been put in Appendix C for the interested
reader. The fimral clasgification matrix shows 68% of the cases
to be correctly classified., This is about the same accuracy as
conditions alone, but chance is now down to 4%. ZIntuitively,
this would seem to be an improvement. To our knowledge there are
no statistical tests available in the literature to evaluate such

cases, 80 we developed and applied information theory statistics,

Basically the notion is simple, First, we can calculate the
amount of information transmitted or shared between the input
variables (actual labels) and the classification function output
(the computed labelg). Table 13 presents one example. Second,
ha%ing computed the two-dimensional diseriminant analysis we have
a 24 x 24 matrix, representing the classification of conditions x
pilots, If we ignore pilots and collapse the matrix we are left
with a2 6 x 6 matrix representing conditions. The extent to whicgh
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the new, collapsed matrix differs from the matrix in Table 13
provides an index (positive or negative) of the effect of
considering pilots and. their -different approacheées im performing
the task. By calculating the information transmitted in the new
matrix, we have an index which i1s in a form comparable to that
obtained from Table i3. An approximation to Chi-square can then
be applied to these H statistics to assess significance

(Attneave, 1959).

Similar analyses were done for piiots and conditions. The
restlts are shown in Table 153, Both information analyses show
significant gains in the amount of information transmitted when
both pilots and conditions are considered in the' classificatiomn.
In statistical terms, this represents an interaction between the
two variables. Stated differently, the results suggest that each
pilot has his own strategy or preference in his use of

instruments and these strategies wvary somewhat across counditions.
Discussion

A number of eye-scan measurements were entered into a
principal components factor analysis. For this experiment 18
components accounted for more than 70Z of the variaance in the
data matrix. The components show little direct relation to the

percent time on instruments but appear to be related to concerns
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Table 15

Evaluation of the interaction between

pilots and conditions.

Amount of Information (H) in bits

Actual Computed Total in Transmitted X2 on
(rows) (columns) Situation Difference
Conditions 2.570 2,544 4,005 1,109
(Original)
Conditions 2.570 2.571 3.879 1.263 218,13
(Computed)
Pilots 1,996 1.997 2,843 1.150
(Original)
Pilots 1.996 1.999 2,702 1.292 201.78
(Computed)
(df on X2 = 3 (pilots); 5 (conds.); p %%Z .01l for both)
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of a pilot while landing; that is the factors seem to make
intuitive sense which is typically the first criterion applied to

factor analysis.

-A more rigorous test 1s whether the components can be used
to discrimingte'among the various experimental variables. TFactor
scores were generated and entered into disc%iminant analysis.
These analyses showed that pilots, segments, and conditioms could
be differentiated. TFurther - -analysis indicated the existence of
an interaction between pilots and conditions which supports the
suggestion that different pilots use somewhat different

strategies in the various conditions,

As a technique, the approach to data analysis seems quite
succaessful, There are, however, certain problems which need to
be evaluated before the full value of the components analysis can
be realized, The first issue has to do with the relativity of
the components. We have already alluded to several ‘of the
components which appear to come about as a result of the 500°
offset of the airplane at the iﬁitiation of the run. ‘As the
anmount of offset is varied, the relative importance of components
will also vary. The second issue revolves around validity. Due

to its importance we will deal with this issue geparately.

We have also stated that changes in instrumentation are
detected by the eye=-scan data analysis. This result has
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implications for other experiments and a more general solution to
the issue of how the pilot uses the instruments. Although
different instrument packages contain more similarities than
differences they do vary somewhat. These changes may well ?esult
in a somewhat different outcome of the factor analysis. While we
would exzpect similar results_overall, the specifics should change
both in the order of the components and in their relative
‘"importance. The whole 1ssue revolves around the fa;t that the

analysis is constrained by the data entered into it,

Finally, although the components do a good job in
diseriminating among the conditions, we lack a needed 1link
between the components and reality. The difficulty here is the
lack 0of a bench mark telling us what pillots are concerned about.
We know that pexceant time on instruments deoes not correlate well
with what pllots tell us about the way they use the instruments
{Dick & Bailey, 1976). Before the results of analyses such as
those reported here can be applied to instrument design with
confidence we need a better link between the way the information

is presented and the way pilots use that information,
Implications and Speculations

Parhaps the most important implication of the present work
is the differentiation between two types of workload., Analysis
of control dinputs differentiates turbulence manipulations whereas
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analysis of eye movement differentiates among iustrument
manipulations, The additional study of the relation between
control inputs and eye—scanning may well yisld many important

answers about instrument design.

The pilots did not use the structurally redundant
instruments in a correlated manner. Pilots treat then
independently, looking at one or the other depending on the
circumstances in some unknown way. Further, when controlling,
the pilots do not appear to have as much time to look at raw data
instruments, Setting aside the issue of crdss—checking, it would

appear that the instrument panel could be gimplified,

The present analysis and virtually every othex report have
only played 1ip service to the differentiation between monitoring
(open=loop) and controlling (closed=loop) fixations. The data in
Table 1 illustrate the problem. The pilot changes the ﬁay he
looks at the instruments In the coupled approach from what he
does in the manual approach., We can be fairly confident about
the same kind of differences between monitoring and coutrolling
fixations within the manuval condition., Indeed, one of the factor
components appears to be described best as "monitoring". We have
no assurance, however, that the monitoring part of the manual
condition is the same as we would get from a pure monitoring
conditdion.
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The present results are compatible with the Senders et al,
(1969) queueing model, The esséqtial difference is in the use of
instrument eclusters as represented by the factor components.

That 1s, rather than use individual instruments as Senders et al.
(1969) did, it appears more appropriate to consider the
components, Before proceeding in this direction, however, a
number of questions need to be answered. The central issues
revolve around the relations among control inputs, eye-scanning,

and the cognitive processes of the pilot.
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The complete list of variables available.

are marked,

Appendix A

The variable label, X{(n),

computer ogutput in Appendix 3,

Transition Probabilities

From

Airspeed

Flight Director
Altimeter

Yor. Sit, Ind,
Rate of Climb
Airspeed

Flight Director
Altimeter

Hor. Sit, Ind,
Rate of Clinmb
Airspeed

Flight Director
Altimeter

Hor. Sit. Ind.
Rate of Climb
Airsgpeed

Flight Pirector

Altimeter

To

Clock
Clock
Clock
Clock
Clock
Airspeed
Airspeed
Afrspeed
Airspeed
Airspead

Flight Director

Flight Director -

Flight Director
Flight Director
Flight Director
Altimeter
Altimeter

Altimetear

71

Those eliminated

corresponds to labels in the

Variable Label

X(1)
XC2)
X(3)
X(4)
X(5)
X(6)
X(7)
X(8)
X(9)
X(10)
X(11)
X(12)
X(13)
X(14)
X(15)
X(16)
X(17)

X(18)

not used
not used
not used
not used

not used

not used

not used
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Hor. Sit. Ind. Altimeter X(19)

Rate of Climb Altimeter X(20)

Airspeed Hor. Sit. Ind. X(21) not used
Flight Director Hor, Sit. Ind. X(22)

Altimeter Hor, Sit. Ind. X{(23)

Hor, Sit. Ind. Hor, Sit, Ind. X{(24)

Rate of Climb Hor. Sit., Ind. X{25)

Airspeed Rate of Climb X(26) not used
Flight Director Rate of Climb Xx(27)

Altimeter Rate of Climb X{28)

Hor. Sit. Ind, Rate of Climb X(29)

Rate of Climdb Rate of Climb X(30)

Airspeead Mean Dwell X(31)

Flight Director Maan Dwell X(32)

Altimeter Mean Dwell X(33)

Hor., Sit., Ind. Mean Dwell X(34)

Rate of Climb Mean Dwell X{35)

Standard Dev. Dwell Airspeed X(36)

Standard Dev. Dwell Flight Director X(37)

Standard Dev, Dwell Altimeter X(38)

Standard Dev. Dwell Hor. Sit. Ind. X{(39)

Standard Dev. Dwell Rate of Climb X(40)
Transitions within the Flight Director

Roll Ind. Roll Ind. X(41)

Speed Bug Roll Ind. X(42) not used
Camd . Bars Roll Ind,. X(43)



Glide Slope
Localizer
Roll Ind.
Speed 3Bug
Cmmd. Bars
Glide Slope
Localizer
Roll Iad,
Speed Bug
Cmmd, Bars
Glide Slope
Localizer
Reoll Ind.
Speed Bug
Cmmd, Bars
Glide Slope
Localizer
Roll Ind,
Speed Bug
Cmmd, Bars
Glide Slope
Localizer
Roll Ind.
Speed Bug
Cmmd,. Bars
Glide Slope

Localizer

Roll Ind,
Roll Ind.
Cell 3
Cell 3
Cell 3
Cell 3
Cell 3
Spead .Bug
Speed Bug
Speed Bug
Speed Bug
Speed Bug
Cmmd. Bars
Cmmd. Bars
Cmmd. Bars
Cmrd. Bars
Cmmd, Bars
Glide Slope
Glide Slope
Glide Slope
Glide Slope
Glide Slope
Cell 7
Cell 7
Cell 7
Cell 7

Cell 7
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X(44)
X(45)
X(46)
X{(47)
X(48)
X(49)
X(50)
X{51)
X(52)
X(53)
X(54)
X(55)
X(56)
X(57).
X(58)
X(59)
X(60)
X(61)
X(62)
X(63)
X(64)
X(65)
X(66)
X(67)
X(68)
X(69)

X(70)

not

not

net

not

not

not

not

not

not

not

not

us ead

used

used

uged

used

us ed

us ed

used

used

used

used



Roll Ind.
Speed Bug
Cmmd. Bars
Glide Slope
Localizer
Roll Ind.
Speed Bug
Cmmd., Bars
Glide Slope
Localizer
Mean Dwell
Mean Dwell
Mean Dwell
Mean Dwell
‘Mean Dwell
S.P. Dwell
S.D, Dwell
S.D. Dwell
S.D. Dwell
S.D, Dwell

Altitude

Localizer
Localizer
Localizer
Localizer
Localizer
Cell 9
Cell 9
Cell ¢
Cell 9
Cell 9
Roll Ind.
Speed Bug
émmd. Bars
Glide Slope
Localizer
Roll Ind.
Speed Bug
Cmmd, Bars
Glide Slope

Localizer

Distance from Threshold

Distance from Centerline

Glide Slope Ezrror

Localizer Error

Airspeed
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X(71)
X(72)
X(73)
X(74)
X(75)
X(76)
X(77)
X(78)
X(79)
X(80)
x(81)
X(82)
X(83)
X(84)
X(85)
X(86)
X(87)
X(88)
X(89)
X(90)
X(91)
X(92)
X(93)
X(94)
X(95)

£(96)

not used

not used

not used

not used

not used



Appendix B

Conplete (rotated) factor loading table. Loadings represent
the correlation between the variables and the component, Like
any other correlation coefficient, the loading can be squared to
determnine the per cent of wariance accounted for by a wariable in
a component. For example, X(6) shows a loading on Factor 2 of
+939 which when squared yields ,88, This means 88% of the Factor

2 wvariance can be accounted for by X(6), Note, however, that

Factor 2 itself only accounts for 6.5% of the total variance,.
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BOTATED FACTOR LOADINGS (PATTEIRN)

X {6} 6
(7} 7
Z(9) 9
(10} 1
(11} 1n
{12) 12
x{13) 13
{14} 14
I(15} 15
{17} 17
x {18} 18
X {19) 1%
I (20} 20
x{22) 22
(2N 23
x{28) 2z
I(25) 25
X (27} 27
1{28) 28
X (29} 29
T30} 30
R SERH] 3t

I{32) 32
{3y 33
X (3h) Iy
X {35) 35
{36 16
X{3an a7
¥ (38) 38
X {32 39
X (90} 40
X {41} &1
X (83} 53
X (a6) 85
X{c9) Ly
X(52) 52
T{53) 53
X {55} 55
X (56) 56
X {57) 87
I{58} 58
1{59) 59
1 {60} 60
Y {(£3) &3
{53} 5L
X{65) 65
X {67 67
X (68} 68
X (70} 70
X173 73
X {78) 78
X {75) 75
1 (78} 74
I(79) 79
g Liy] 80
X {87) 81
I(82) 82
T [83) 63
X (84} an
X (85} 85
X (86) 66
X (87) 87
X {63} 83
T(89) 89
X {90} 20
x{91) 91
x {93} 93
T {90) 9k
% [95) 9§
I{96) 96

PaCTDE FACTOR
1 2
G.139 0.939%
0.033 0.913
=0.00L 0,110
G.100 0.201
a,038 0.%19
-0.163 -0.026
=0.0%5 =0.002
0,026 =%. 180
0.861 C.052
=3.111 -0.015
0.041 0.098
~0.527 =0.056
0.218 0,118
~0.069 =0.167
-0.015 4,003
=0.077 «G.090
0.220 -0.065
0.921 a.064
0.235 C.C18
8.078 -0.020
0,855 0.163
G.7%2 .83
~0,219 ~G.082
0.038 Q.207
~0.167 =0.032
0.734 0.171
0.173 0,868
=0,206 -0.08¢8
0.113 0.127
=-G.035 =0.075
0.828 0,123
-¢.015 -0,023
=0,077 -0.075
0.035 G.D19
=0.006 9.003
=0,130 =0, 100
=0.100 0.102
=0.015 -0.033
-0.072 -0.078
=0.101 0,161
0,855 G. 146
9,162 0. 08B
=-0,103 -U. 148
d.144 c.ca1
0.237 9.061
=0.021 ~0.002
-0.071 -0.026
=3.080 L.011
-0.081 2.043
=0.081 =-0,.118
0,512 -0.028
-0.,13% -0. 118
0.593 0.C20
0.308 =0, 135
0.279 0.067
0.235 ~3,0322
=0.030 ~0.026
0,130 0.036
9.158 0.005
=0.033 =0.076
0.174 0.001
-0.042 -0.056
0.07¢ 0.065
0.121 9.911
~3.126 -0, 059
-0,320 9.060
.08 -d.L66
0.057 =0.C02
.03l =0.053
-0.008 G.080

FACTOR
3

0.038
Q0.0u8

=2.022
0. 108"

Appendix B

PACTIOR
&

0,068
=-0.108

t.204
~0.020
=0.096

FACTIOR
g

=0. 022
=0, 0uy

FACTIOR
9

=D.089
=0.075

-0.083
=0,023

FACTOP
10

G. 128



I {6} [
b A ] 7
I {9} 9
I(10) 10
{1 11
X{i2} i2
x {13} 13
I (14) 18
Z(15) 15
I(179) 17
x{18) 18
{19 18
x(20) 20
I{22) 22
I{23) 23
I {24} 2
X (25) 25
X{27) 27
I {2E) 28
X [(29) 29
X {30) 30
I{3N 3
{32} 3z
X{3a3 33
X (54} 34
I{3%5) 35
X (36 36
{37 37
X (38) 38
x(3% 39
I {40} 1
x{s1) 3]
X (43) 43
X (u8) ug
T [59) 49
L(52) 52
I {53} 53
1 {55} S5
I{56) 58
X {57} 57
I(59) 58
I{59) 59
1{60) 60
X (63) 63
I[6H) 64
X (65} 65
X567 67
X (68} 68
{70} 70
{73} 73
X(74) T4
X(75) 75
X (78} 78
I(79) 19
Y (80) a0
(81 81
X (82} 82
(83 83
X {54} 84
T (85) 85
X {B6) 86
X(87) 87
X {88) ag
X (89) 89
I{950) a0
X{91) 9
I (93) 93
X {96} 94
¥ {35} 95
I(36) 96

P

-0.047
~0,157
«0.023
-0.085
~0.076

0.032
~0.162
~0.032
=0.087
=-0.075
-0.113
-0.062

Q.06
-0.014

0.02¢9

0.007

".978
2,274

PACTOR
12

=0.018
-0.00%
=0, 070
-0.022
=0.018
~6.G27

0.084

Q,008
«0.003
~0.033

0. 116

0.004

0.007

0,006
~0.036

0.315

0. 988

0.007

C.9o87

0.0c6

4,526
2,100

FACIOR
13

0.001
~«0,037
-0.168

0.738
0,063
0.153
=0.023
0.139
0.160
¢.004
=0.014
-0.002
Go.147
=0,035
-0.003
¢.018
-0.012
0.023
=0.9010
0.0M
-~0.,011
~0.00%
-0.039
0.008
-0¢.022
«0.031
¢.037
~J.005
=0.037
-0.236
0,038
0.28%
=0.015
0.008
0.27%
0.038
-0.003
~0.030
0.252
=-0.039
0,138
-0.012
-5,.092
~0.102
~0.002
=0.031
=-0.08
-0.053.
-0.032
=-0.003
«0.027
-0.064
-0.018
=-0.063
~0.114
0.005
0.C17
0.025
0.6237

4.4ug4
1.726

FACTOR

£.10%9
=-0.045
-0.087
=0.0BY
0,005
0.087
0.023
0.074
0.031
0,001
-0.063
0,056
~3.08%
Q.0087
0.017
=0.012

-0.709

3.815
$.517

0.013
-0.049
-0.017
Q0,082
=0.059
-0,028
-0.083
=3,043
-0.059
-0,.022
=-0.348§
=0.020
=-0.060

0,013
=0.018
=0.036
=-0.080

0.116
=-0,005
=0.002

0.001

0.088

0. 745

0077

0.122

0.068
=G.057

0,1C8
-0.081
-0.021
-0.983

Q.308

0.766

0.23%

0.088

0.037
~(.059
=-0.030

0.025

0.089
-0.085
-0.012
-0.036
-(.029
-0,088
-0.082
-0,002
-G.004
=0.005
-0.087
-0.110
=0.014
-0.0C5
=0.000

0.032

3.808
1473

FACTOR
3

~-0.010
=-0,021
c.209
-0.13%
=-0.020
o, 118
¢.020
0.05a
=0.032
-0.015
0.027
-p.032
G.117
0.075
0,004
6.029
-},082
0.0%2
-6.227
-9.,C86
-0.013
0.015
-G,003
0.029
-0.003
-0.050
~0.005
G, 068
0,068
«Q.0a87
-0.027
-0.035
-0.003
-0,044
0.016
-0,065
=0.059
b.052
d.004
-0,058
0,036
D.G22
0.463
-0.0a8
-0.026
0. 139
~0.234
~0.003
0,081
0.EnT
B.628
0.153
0.175
=-G,059
0. 421
~0.070
0.011
-6. 159
C.045
0. 001
-0,048
0.009
0. 138
0.023
0.268
~0.088
-0,01a
-0.037
-0.012

=0.112

3.650
1.435

FACTOR
17

0.081
=CG.013

4,011
~0.030
=G.007
=0.02%
=0.002

TACTOR
18

0.071
=-0.028%
9. 035
0,598
0.013
0. 162
0.011
0,011
0.026
0. 072
-0.044
-0, 140
0. 4R5
-0.017
0, 089
-0, 019
0.026
0.029
-0, 288
-0, 04B
=0, Gué
€. 050
¢.013
0. 030
=0, 006
-0. 118
0.035
0. 485
0. 002
=0.013
=0. 082
=-0.012
=-0.014
0.021
=0. 087
=0.7059
=0. 074
-0. 092
=0.008
=0. 0635
C. 106
0.008
0. 199
0.020
0.005
4. 079
~0:,038
0. 021
-1.010
0,176
=0. 263
-0, 00t
0. 253
0.103
=0, 157
0.031
0.053

3.191

THE ¥P POR EACH FACTOR IS THE SUX OF THT SOQDAR®S oF THE ZLEMERTS OF THE COLUMW OF THE PACTOR PATTERN BATRIX

CORRESPOMDING 10 THAT PACTOR,

WHEN THE ROTATION IS QRTHOGONAL, THE VP IS THE VARIABCE EXPLAINED BY THE PACTOR.

2.857
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Appendix ©
el P2 P L4

c2 ¢ o ¢ ¢6 cL ¢z e ¢ C5 ¢ € € ¢ ¢ © € c ¢z ¢ ¢ & 0o
4. 0. 0. 0. 0. 1. 0. 9. 2. 0. 1. 0. t. 0, 0. BH. 0. 0. 0. 0. 0. 0. 0. 45,

6. 0. 2. D. 2. 0. 1. 0. 0. 0. 2 0. 3. 0. 0. 0. Q. a. 0. 0. 0. 1. 0. 50,
0. 4A0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ?a I. 1. 0. 0. Q. 0. 1. 0. O. 0., 45.

2. 0. 33, D. 2. i. 3. 0. 0. 0. 0. G. 0. Q. i. G. Oe 0. 0. 0. 2 0. 6. 50a

. 0. 0. 0. 0. 44. 0. 0. 0. 6. 2. 0. 0. 0. a. 0. 0. 3. 0. 0. Q. Q. 6., S0.
2. 0. 3, 0. . N. 217. 0. [ 0. n, 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 35,
a. 0. 0. 0. 0. 0. 0. 12, 2. 9. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. De l. 30.
0. 0. 54 0. 0. 2 1. 4. l4. S Te 0. 0, a. 0. 0. 0. 1. 0. 0. 1. 0. 5. 45,
0. 0. 1. 0. 0. 0. 0. P 2. 30. 10, 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 2. 50.
0. 0. 0. 0. 0. 0. 2 . 5. 6. 24. 0. 0. G. 0. 0. o, 0. 1. 0. 5. (. 2. 45,

0. 0. 0. 0. 0. 0. 0. n, 0. 0. 0. 4l. 0. 0. 0. a. 1. 3. 0. 0. 0. 0. 0., 45.

0. 3. 0. 0. 0. 0. 0. . 0. 0. 2. Q. -4 Ae 1. 5a 3. 0. 0. 0. 0. 0. 0. 20.
0. 0. . 0. 0. 0. 0. 0. Q. 0. i. 0. 9. 2. 2B. 4. 0. 0. 0. 0. 0. 0. 0. 45.
. 4. 0. D. 0. 0. 0. a. 0. 0. 0. . 1. 3. 4. 33, 0. 0. 0. 0. 0. 0. 0. 45,
0. 0. 0. 0. 1 0. 0. l. 0. 0. 2. 0. 0. 0. 0. 0. 36. 0. }. 0. 0. . 0. 40.
0. 0. 0. n. 0. 0. 0. 0. 0. 0. 0. 0. Lo 0. 0. 0. 0. 24%. 0. 10. Q. 0. 0. 25.

o. 2. N. O h B 0. 2. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 1. 43, Se 5. 0. 15. 75,

0. 0. . 0. 0. Ne. 2. 0 . 0. i. 0. 0. 0. 0. 0. 0. 0. 7. 0. 17, Q. 2. 30.
0, 0. 0. n. 0. 0. 0. 0. 0. 0. G. G. 0. 0. G. 0. Q. 0. 0. 6. L. 28. 0. 35.
0. 0. ?e De 0. i. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.- 0. 2. a. L. 0. 12. 20.

46. 50, 60, 2l. 49. 49, 40, 20. 27. 5. 57. 42, 67. 1l. 40. 47. 40. 36. 55. 52. 38. 42. 46.1025.



