37 research outputs found

    Transferring the Cost of Higher Education To Students and Families: Who Bears the Greatest Burden?

    Get PDF
    The statistical results of this study confirm what many in the popular media have been saying. The greatest burden of the increasing level of student debt is falling on middle class families. In addition to income differences, we also find that that there are gender, race and ethnic differences in the burden of student debt. Specifically, these results suggest that the rising burden of student debt will disproportionately fall on females and African Americans. We also find that non-traditional students (older, independent/not living with family of origin, and having their own children) had higher propensity to have debt after college than more traditional college students, although being married tends to neutralize this effect

    Population pharmacokinetic study of memantine: effects of clinical and genetic factors.

    No full text
    BACKGROUND AND OBJECTIVE: Memantine, a frequently prescribed anti-dementia drug, is mainly eliminated unchanged by the kidneys, partly via tubular secretion. Considerable inter-individual variability in plasma concentrations has been reported. We aimed to investigate clinical and genetic factors influencing memantine disposition. METHODS: A population pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic setting. Patients were genotyped for common polymorphisms in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, RXR, PPAR) involved in transporter expression. RESULTS: The average clearance was 5.2 L/h with a 27 % inter-individual variability (percentage coefficient of variation). Glomerular filtration rate (p = 0.007) and sex (p = 0.001) markedly influenced memantine clearance. NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance (p = 0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16 % slower memantine elimination than carriers of the CC genotype. CONCLUSION: The better understanding of inter-individual variability of memantine disposition might be beneficial in the context of individual dose optimization

    Excitotoxic Lesions of the Neostriatum as an Animal Model of Huntington’s Disease

    No full text

    PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically

    No full text
    Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion in the huntingtin (htt) gene. We found that peroxisome proliferator-activated receptor delta (PPARδ) interacts with htt and that mutant htt represses PPARδ-mediated transactivation. Increased PPARδ transactivation ameliorated mitochondrial dysfunction and improved cell survival of HD neurons. Expression of dominant-negative PPARδ in CNS was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities, and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPARδ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR δ, using the agonist KD3010, improved motor function, reduced neurodegeneration, and increased survival. PPAR δ activation also reduced htt-induced neurotoxicity in vitro and in medium spiny-like neurons generated from human HD stem cells, indicating that PPAR δ activation may be beneficial in individuals with HD and related disorders
    corecore