28 research outputs found

    Partial Hydrogenation of Calophyllum Inophyllum Methyl Esters to Increase the Oxidation Stability

    Get PDF
    Calophyllum inophyllum methyl esters have a low oxidation stability value (5-6 h) caused by high amounts of polyunsaturated fatty acid methyl esters (FAME), especially methyl linoleate. Partial hydrogenation was done to reduce the number of polyunsaturated FAME to transform them into mono-unsaturated. This was performed at 6 bar and 900 rpm with Pd/Al2O3 solid catalyst in a reactor with a capacity of 1 liter. The research purpose was to learn the effects of reaction temperature (80; 100; 120°C) and time (1; 1.5; 2 h) on the FAME composition. The optimum condition of the experiment was obtained at 120°C for 1 h, with 15.47 h as the oxidation stability value, 17.8°C as the cloud point value, and 51.17 as the cetane number. Under this condition, the methyl linoleate content decreased by 59.89% w/w (from 21.869% to 8,770% w/w) and methyllinoleate hydrogenated into methyl elaidate. Meanwhile, the methyl linolenate content decreased by 85,37% w/w (from 0.205% to 0.030% w/w) and methyl linolenate hydrogenated into methyl linolelaidate. These results show that the research met the following standards: a minimum oxidation stability value of 10 h in accordance with the World Wide Fuel Charter (WWFC) 2009, a maximum cloud point value of 18°C and a minimum cetane number 51 in accordance with SNI 7182-2012. The physical properties values of the Calophyllum inophyllum methyl esters were predicted using the empirical equations

    Sintesis Biodiesel dari Minyak Kemiri Sunan dengan Katalis Homogen melalui Reaksi Esterifikasi dan Transesterifikasi secara Bertahap

    Get PDF
    Telah banyak dilakukan penelitian mengenai alternatif bahan bakar fosil salah satunya yaitu biodiesel. Salah satu tanaman bahan baku biodiesel yang potensial yaitu Kemiri Sunan dikarenakan tidak dikonsumsi oleh manusia sehingga tidak akan bersaing dengan kebutuhan bahan pangan. Biodiesel dapat diproduksi melalui proses esterifikasi dan transesterifikasi secara bertahap. Katalis yang digunakan adalah asam sulfat (H2SO4) pada reaksi esterifikasi dan KOH pada reaksi transesterifikasi dengan kondisi operasi suhu 65oC, kecepatan pengadukan 1300 rpm, rasio mol minyak terhadap metanol 1:6. Kondisi operasi suhu tidak divariasikan karena proses reaksi terjadi pada suhu optimum 65oC pada tekanan atmosfer. Tujuan peneltian adalah untuk mengetahui kondisi optimum waktu esterifikasi (2, 4, 6 jam) terhadap kadar asam lemak bebas minyak Kemiri Sunan serta mengetahui kondisi optimum waktu transesterifikasi (0,5; 1; 1,5; 2 jam) dan pengaruh ukuran magnetic stirrer (4 dan 5 cm) terhadap kualitas biodiesel (kadar metil ester dan angka asam).Berdasarkan hasil penelitian dapat disimpulkan waktu optimum reaksi esterifikasi adalah 4 jam, waktu optimum untuk reaksi transesterifikasi adalah 0,5 jam, dan semakin besar ukuran diameter magnetic stirer semakin tinggi kadar metil ester yang dihasilkan.Hasil ujiChromatography Gas kadar metil esterproduk biodiesel adalah 81,24%-msedangkan dengan metode hitung (SNI) didapat kadar metil ester sebesar 98,7% m. Hasil penelitian produk biodiesel sudah memenuhi persyaratan SNI 7182:2015 untuk kadar metil ester yang ditetapkan sebesar minimum 96,5%-m, angka asam 0,30 mg KOH/g sampel dan gliserol total 0,13%-m

    Synergistic of yeast Saccharomyces cerevisiae and glucose oxidase enzyme as co-biocatalyst of enzymatic microbial fuel cell (EMFC) in converting sugarcane bagasse extract into electricity

    Get PDF
    The microbial fuel cell (MFC) is an ecologically friendly alternative energy source. Due to the typically limited electron transfer in MFC systems, co-biocatalysts are necessary to enhance their performance. Enzymes are used as co-biocatalysts due to their superior ability to generate energy, and the system is known as an enzymatic microbial fuel cell (EMFC). One of the substrates that may be used is bagasse waste extracted from sugarcane. Saccharo­myces cerevisiae and the enzyme glucose oxidase (GOx) serve as co-biocatalysts in the breakdown of sugarcane bagasse waste in this study, which uses single-chamber EMFCs. In EMFC using sugarcane bagasse waste extract employing S. cerevisiae biocatalyst and glucose oxidase enzyme co-biocatalyst, the open circuit voltage was 0.56 V and the maximum power density was 146.65 mW m-2, an increase of 10.4 times to MFCs that solely employed only yeast biocatalyst. In addition, the chemical oxygen demand (COD) reduction achieved by this technology is 75 %. In addition, the pH of sugarcane bagasse waste extract samples treated with Saccharomyces cerevisiae yeast and GOx enzyme decreased from 4.6 to 4.2. This research demonstrates that adding the co-biocatalyst GOx enzyme may boost the performance of the traditional yeast MFC

    Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation

    Get PDF
    The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Analisis Rasio Energi Daur Ulang Panas pada Produksi Biodiesel Secara Non-Katalitik

    Get PDF
    Energy consumption in non-catalytic biodiesel production is still high, and needs to be reduced to the optimum level. It can be accomplished by recirculating the heat being used in the process by using heat exchanger. The objective of this study is to analyze the energy ratio of the system as influenced by the heat recirculation through a heat exchanger. This experiment used a superheated methanol vapor method for non-catalytic biodiesel production. The study was started with the determination and calculation of physical and thermal properties of materials to be used (palm olein, methanol, and methyl ester), continued with the designing of the heat exchanger, the experiment itself, and the energy ratio analysis. The process was occured in semi-batch mode with 3 levels of methanol flow rate, i.e., 1.5, 3.0, and 4.5 mL/minute, at reaction temperature of 290 °C. The results show that heat recirculation by using heat exchanger can increase the energy ratio from 0.84 to 1.03, according to the definition that energy ratio is the ratio between energy content of the biodiesel to the total energi of the feedstock and the process energy. If the energy ratio is defined as the ratio between the increase in energy content of the biodiesel from its feedstock to the process energy, the energy ratio was found to be 7.85, 2.98, and 2.87 for the respective methanol flow rate of 1.5, 3.0, and 4.5 mL/min

    Tinjauan Perkembangan Proses Katalitik Heterogen dan Non-Katalitik untuk Produksi Biodiesel

    No full text
    AbstractBiodiesel is still expected to be an alternative fuel other than petroleum. Therefore, intensive research is being done by researchers in the world to develop biodiesel production process that is more efficient, economical and environmentally friendly. Among them is by developing a catalytic and non-catalytic process. The heterogeneous catalytic process is of particular concern with many promising results and is expected to address the current lack of homogeneous catalytic processes. In Indonesia, many natural catalyst sources have been investigated into potential heterogeneous catalyst. The non-catalytic process also provides a reasonably reliable process expectation of course with its various challenges. Both heterogeneous catalytic processes and non-catalytic processes are believed to be potential processes that can be applied in the near future. The development of the results and the challenges of these two processes, therefore, is reviewed in this work as an innovative biodiesel process technology research opportunity.AbstrakBiodiesel masih diharapkan menjadi bahan bakar alternatif selain dari minyak bumi. Oleh karenanya penelitian yang intensif tengah dilakukan para peneliti di dunia untuk mengembangkan proses produksi biodiesel yang lebih efisien, ekonomis dan ramah lingkungan. Diantaranya adalah dengan mengembangkan proses secara katalitik dan non-katalitik. Proses katalitik heterogen menjadi perhatian khusus dengan banyaknya hasil penelitian yang menjanjikan dan diharapkan dapat mengatasi kekurangan proses katalitik homogen saat ini. Di Indonesia berbagai sumber katalis alami telah diteliti untuk dijadikan katalis heterogen. Namun, proses non-katalitik juga memberikan harapan proses yang cukup bisa diandalkan tentu dengan berbagai tantangannya. Baik proses katalitik heterogen maupun proses non-katalitik diyakini sebagai proses potensial yang dapat diterapkan dalam waktu dekat ini. Oleh karena itu, perkembangan hasil dan berbagai tantangan dari kedua proses tersebut diulas dalam tinjauan ini sebagai peluang penelitian teknologi proses biodiesel yang inovatif

    Prediksi Kualitas Biodiesel Berdasarkan Komposisi Asam Lemak Bahan Mentah (Minyak-lemak)

    Full text link
    The characteristics of biodiesel are similar to diesel fuels, and therefore biodiesel becomes a strong candidate to replace the diesel fuels if the need areses. Biodiesel standard- so called SNI 04-7182-2006 has been approved by the Indonesian National Standardization Agency (BSN). The basic fuel properties for biodiesel are influenced by the fatty acid composition of the feedstock such as the sensity, viscosity, cetane number, heating value and cloud point. Therefore, the value of these properties can be predicted from the fatty acids composition of the feedstock using the blending equations. This work uses pure component data for methyl palmitate, methyl stearate, methyl oleate, and methyl oleate to develop and test blending equations for the prediction of the basic fuel properties. The results from the blending equations are compared with literature values for biodiesel for a number of triglyceride sources such as palm and jatropha oils. Typical average errors are less than 10% for the density, cetane number and healting value. The blending equation for the viscosity and cloud point are suitable only for a speciefed biodiesel

    Tinjauan Perkembangan Proses Katalitik Heterogen dan Non-Katalitik untuk Produksi Biodiesel

    Full text link
    Biodiesel masih diharapkan menjadi bahan bakar alternatif selain dari minyak bumi. Oleh karenanya penelitian yang intensif tengah dilakukan para peneliti di dunia untuk mengembangkan proses produksi biodiesel yang lebih efisien, ekonomis dan ramah lingkungan. Diantaranya adalah dengan mengembangkan proses secara katalitik dan non-katalitik. Proses katalitik heterogen menjadi perhatian khusus dengan banyaknya hasil penelitian yang menjanjikan dan diharapkan dapat mengatasi kekurangan proses katalitik homogen saat ini. Di Indonesia berbagai sumber katalis alami telah diteliti untuk dijadikan katalis heterogen. Namun, proses non-katalitik juga memberikan harapan proses yang cukup bisa diandalkan tentu dengan berbagai tantangannya. Baik proses katalitik heterogen maupun proses non-katalitik diyakini sebagai proses potensial yang dapat diterapkan dalam waktu dekat ini. Oleh karena itu, perkembangan hasil dan berbagai tantangan dari kedua proses tersebut diulas dalam tinjauan ini sebagai peluang penelitian teknologi proses biodiesel yang inovatif

    Perkembangan Proses Pembuatan Biodiesel sebagai Bahan Bakar Nabati (Bbn)

    Full text link
    As energy dernands increase and fossil fuel reservas are limited, research is directed towards alternative renewable fluls. A potential diesel fuel substitusi is biodiesel, obtained from fatty acids methyl esters (FAME) and produced by the transesterfication reaction of triglyceride or free fatty acid (FFA) of vegetable oils with short-chain alcohol, mainly methanol. Most of the currently of alcohol. Although the removal of the excess alcohol can be easily achieved by distillation, however the removal of catlyst and the by-product formed from its reaction with the reactants is complicated while several methode for glycerol purification have been reported. The disadvantages resulting from the use of a catalyst and itsremoval from theproducts can beeliminated if a non-catalytic reaction of the vegetable oils with alcohol can be realized and a simpler and cheaper process can be developed.Indonesia has the opportunity to expand oil palm and other plantations such as jatropha curcas (jarak pagar)in order to provide sufficient amount of crude oil for development of biodiesel industry
    corecore