14 research outputs found

    Nonlinear Damage Modeling and Analysis of Viscoplastic Composite Materials

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : ν˜‘λ™κ³Όμ • 계산과학전곡, 2014. 8. 정인석.항곡기 κ²½λŸ‰ν™”λ₯Ό ν†΅ν•œ μš΄ν•­νš¨μœ¨μ„ μ¦μ§„μ‹œν‚€κΈ° μœ„ν•΄ 졜근 폴리머 λ³΅ν•©μž¬λ£Œλ₯Ό μ μš©ν•œ 항곡기 μ£Ό ꡬ쑰물의 개발이 λ³΄νŽΈν™”λ˜κ³  μžˆλŠ” 좔세이닀. λ³΅ν•©μž¬λ£Œμ˜ 항곡기 ꡬ쑰재료둜의 적용 ν™•λŒ€λŠ” 일반적인 항곡기 운용 쑰건을 λ‚˜νƒ€λ‚΄λŠ” μ„ ν˜•, 정적 ν•˜μ€‘ ν•˜μ˜ 항곡기 ꡬ쑰 섀계 및 해석에 μš”κ΅¬λ˜λŠ” 해석 기법과 재료 물성확보 λ“± 곡학적 κΈ°λ²•μ˜ λ°œμ „μœΌλ‘œ μ΄μ–΄μ‘Œλ‹€. κ·ΈλŸ¬λ‚˜ 항곡기 ꡬ쑰재료둜 널리 μ μš©λ˜λŠ” λ³΅ν•©μž¬λ£Œμ˜ 동적 거동 및 λΉ„μ„ ν˜• λ³€ν˜• 등은 ν•΄μ„μ˜ 정확도가 μ„ ν˜•, 정적 해석에 λΉ„ν•΄ μƒλŒ€μ μœΌλ‘œ 높지 μ•ŠμœΌλ©°, 특히 좩격 λ˜λŠ” μΆ©λŒμ— μ˜ν•΄ λ°œμƒλ˜λŠ” λΉ„μ„ ν˜• κ±°λ™μ˜ 해석적 방법을 ν†΅ν•œ μ˜ˆμΈ‘μ—λŠ” ν•œκ³„λ₯Ό λ‚˜νƒ€λ‚΄κ³  μžˆλ‹€. κ·ΈλŸ¬λ―€λ‘œ μ΄λŸ¬ν•œ λΉ„μ„ ν˜• 거동과 μΆ©λŒμ†λ„μ— 따라 λ³€ν™”ν•˜λŠ” λ³΅ν•©μž¬λ£Œμ˜ 거동을 μ˜ˆμΈ‘ν•˜κΈ° μ ν•©ν•œ 해석 λͺ¨λΈκ³Ό λ°©λ²•μ˜ κ°œλ°œμ„ 톡해 항곡기 ꡬ쑰물의 내좔락 μ„±λŠ₯ ν–₯상이 κ°€λŠ₯ν•  κ²ƒμœΌλ‘œ νŒλ‹¨ν•  수 μžˆλ‹€. λ³Έ μ—°κ΅¬λŠ” 외연적 μœ ν•œμš”μ†Œν•΄μ„κΈ°λ²•μ— μ μš©ν•˜κΈ° μœ„ν•œ λ³€ν˜•λ₯ μ†λ„에 따라 λ³€ν™”ν•˜λŠ” 폴리머 λ³΅ν•©μž¬λ£Œμ˜ λΉ„μ„ ν˜• 손상 λͺ¨λΈμ— κ΄€ν•œ κ²ƒμœΌλ‘œ, 재료의 λΉ„μ„ ν˜• 손상 거동을 효과적으둜 μ˜ˆμΈ‘ν•˜κΈ° μœ„ν•΄ μˆ˜ν–‰λ˜μ—ˆλ‹€. λ³΅ν•©μž¬λ£Œμ˜ νŒŒμ†μ΄ λ°œμƒν•˜κΈ° μ „ 거동을 μ˜ˆμΈ‘ν•˜κΈ° μœ„ν•œ 손상 λͺ¨λΈμ€ λ‹€μ€‘μŠ€μΌ€μΌ 접근법을 μ΄μš©ν•œ 폴리머 λ³΅ν•©μž¬λ£Œμ˜ 점탄성, μ μ†Œμ„± κ΅¬μ„±λ°©μ •μ‹μœΌλ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€. ν˜„μƒν•™μ μœΌλ‘œ, λ©΄λ‚΄ μ „λ‹¨ν•˜μ€‘μ΄ μž‘μš©ν•˜λŠ” λ³΅ν•©μž¬λ£Œμ˜ λΉ„μ„ ν˜• λ³€ν˜• 거동은 기질의 μ μ†Œμ„± 거동과 λ³΅ν•©μž¬ λ‚΄λΆ€μ˜ 미세손상에 μ˜ν•œ 손상거동에 μ˜ν•΄ λ‚˜νƒ€λ‚˜λŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ Έ μžˆλ‹€. 동적 ν•˜μ€‘μ΄ μž‘μš©ν•˜λŠ” 경우 λ³€ν˜•λ₯ μ†λ„μ˜ λ³€ν™”λŠ” λ³΅ν•©μž¬λ£Œ λ‚΄ 기질의 κ±°λ™μ˜ λ³€ν™” 뿐 μ•„λ‹ˆλΌ, λ³΅ν•©μž¬ μ†μƒκ±°λ™μ˜ λ³€ν™”λ₯Ό μ΄ˆλž˜ν•˜κ²Œ λœλ‹€. λ©΄λ‚΄ 전단 거동에 λŒ€ν•œ 정확도가 ν–₯μƒλœ λ―Έμ‹œμ—­ν•™λͺ¨λΈμ˜ μ μš©μ„ 톡해 λ³€ν˜•κ±°λ™μ˜ νŠΉμ„±μ΄ μƒμ΄ν•œ μ„¬μœ μ™€ 기질의 거동을 λ™μ‹œμ— κ³ λ €ν•˜μ˜€λ‹€. 해석 λͺ¨λΈμ˜ 정확도 ν–₯상을 μœ„ν•΄ λ³Έ μ—°κ΅¬μ—μ„œλŠ” κ±°μ‹œμ—­ν•™μ  이방성 연속체 손상역학이둠을 λ°”νƒ•μœΌλ‘œ λ³€ν˜•λ₯ μ†λ„에 따라 탄성손상λͺ¨λΈμ˜ μƒνƒœλ³€μˆ˜κ°€ λ³€ν™”ν•˜λŠ” 손상λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ λ³΅ν•©μž¬ μ μΈ΅νŒλ‚΄μ˜ 적측의 νŒŒμ†μ΄ λ°œμƒν•œ 이후 재료 κ°•μ„± 및 κ°•λ„μ˜ λ³€ν™”λ₯Ό λ‚˜νƒ€λ‚΄κΈ° μœ„ν•œ 손상 거동 λͺ¨λΈμ„ μ μš©ν•˜κ³  μžˆλ‹€. λ³΅ν•©μž¬ 적측판 λ‚΄μ˜ λ³΅ν•©μž¬ 적측의 νŒŒμ† λ°œμƒ μ˜ˆμΈ‘μ€ Hashin νŒŒμ† λͺ¨λΈμ„ κΈ°λ³Έν˜•νƒœλ‘œ λ³€ν˜•λ₯ μ†λ„에 따라 νŒŒμ†κΈ°μ€€μ΄ λ³€ν™”ν•˜λŠ” νŒŒμ† λͺ¨λΈμ„ μ μš©ν•˜μ˜€λ‹€. λ³΅ν•©μž¬ 적측판 λ‚΄ λ³΅ν•©μž¬ 적측의 νŒŒμ†μ— μ˜ν•œ κ°•μ„± 및 μž‘μš© 응λ ₯의 κ°μ†Œλ₯Ό λ‚˜νƒ€λ‚΄κΈ° μœ„ν•΄ λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν–₯μƒλœ 손상 진전 λͺ¨λΈμ„ μ œμ•ˆν•˜κ³  μžˆλ‹€. 이 손상 진전 λͺ¨λΈμ€ κΈ°μ‘΄ 손상 진전 λͺ¨λΈμ— λ‹€μ–‘ν•œ ν˜•νƒœμ˜ 손상 거동 곑선을 λ‚˜νƒ€λ‚΄κΈ° μœ„ν•œ λ³€μˆ˜λ₯Ό μΆ”κ°€ν•¨μœΌλ‘œμ¨ κΈ°μ‘΄ λͺ¨λΈμ— λΉ„ν•΄ λ‹€μ–‘ν•œ 손상 거동을 λͺ¨μ‚¬ν•  수 μžˆμ–΄, 외연적 μœ ν•œμš”μ†Œν•΄μ„μ„ μ΄μš©ν•œ λ³΅ν•©μž¬ 점진적 νŒŒμ†ν•΄μ„μ— μ ν•©ν•œ λͺ¨λΈμ΄λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆλœ λ³€ν˜•λ₯ μ†λ„에 따라 λ³€ν™”ν•˜λŠ” 손상 λͺ¨λΈμ„ μ μš©ν•œ 해석 κ²°κ³ΌλŠ” λ‹€μ–‘ν•œ λ³€ν˜•λ₯  μ†λ„μ—μ„œμ˜ μ‹œν—˜μΉ˜μ™€ 비ꡐλ₯Ό 톡해 κ²€μ¦λ˜μ—ˆμœΌλ©°, 높은 해석 정확도λ₯Ό 확인할 수 μžˆμ—ˆλ‹€. λ˜ν•œ λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆλœ 손상 진전 λͺ¨λΈμ€ 외연적 μœ ν•œμš”μ†ŒκΈ°λ²•μ„ μœ„ν•œ μ μ§„μ νŒŒμ†ν•΄μ„κΈ°λ²•μ— 맀우 μ ν•©ν•œ λͺ¨λΈμž„을 확인할 수 μžˆμ—ˆλ‹€.Recently, polymeric composite materials have been widely used as the primary structures for saving the weight and increasing the efficiency in the aerospace industry. As the application of composite airframes is promoted, it is almost equipped that the engineering properties and analysis method for the composite structural design for the quasi-static and linear conditions. However, analysis methods for of the dynamic and nonlinear behaviors of composite materials are relatively deficient to fully predict structural responses, and which nonlinear behaviors are typically caused by the impact or crash conditions. Therefore, appropriate analysis methods for the rate-dependent and nonlinear behaviors of composite materials can improve the crashworthiness performance of aerospace structures. The present study aims at the nonlinear damage models for the explicit finite element method with respect to strain rates which are to predict nonlinearly damaging behaviors of polymeric composite materials. The damage model for prior to material failure, which represents the rate-dependent damage modeling for polymeric composite materials with the viscoelastic and viscoplastic constitutive model using a multi-scale approach. Phenomenologically, the nonlinear response of a composite under the in-plane shear loading condition is originated from the viscoplasticity of a matrix and the damage behavior of composite materials. In case of dynamic loading conditions, the strain-rate effects the change of the damage behavior of composite materials, as well as the behavior of the matrix. The enhanced micromechanical model which improves the in-plane shear behavior, is used for analyzing the rate-dependent behaviors of the fiber and matrix constituents. The rate-dependent elastic damage model based on orthotropic continuum damage mechanics theory at the macromechanical level is applied to improve the accuracy of the analysis model. The damaging behavior after the material failure in this study, which represents the degradation after the composite failure. The rate-dependent composite failure criteria based on Hashin failure model is employed in this study. In order to degrade the stiffness and reduce the stresses, the enhanced damage progression model is proposed in this study. This model is suitable for the progressive failure analysis of composite materials using the explicit FE analysis, because it has one more variable than the original model which can adjust the progressive failure behaviors of composite laminates. Predictions by presented the rate-dependent damage model are shown to agree fairly well with experimental results over a wide range of strain rates. The enhanced damage progression model is shown that it is quite suitable for the progressive failure model for the explicit finite element method.ABSTRACT i 1. INTRODUCTION 1 1.1 Backgrounds 4 1.2 Scope of this works 11 2. RDM MODEL FOR POLYMERIC COMPOSITES 14 2.1 Phenomenological description for polymeric composite materials under in-plane shear dynamic loading 15 2.1.1 Orthotropic behavior of fiber reinforced composite materials 15 2.1.2 Nonlinear behavior of in-plane shear loaded composite materials 17 2.1.3 Rate-dependent behavior of polymeric composite laminates 23 2.2 Rate-dependent polymer model 26 2.2.1 Viscoelastic model for polymer 27 2.2.2 Viscoplastic model for polymer – State variable constitutive equation 30 2.2.3 Viscoplastic model for polymer – Material constants determination 33 2.2.4 Viscoplastic model for polymer – Compressive loading consideration 37 2.3 Composite micromechanical model 39 2.3.1 Original micromechanical model – Slicing algorithm 40 2.3.2. Enhanced micromechanical model – Modified slicing algorithm 47 2.4 Rate-dependent damage model prior to failure 51 2.4.1. Theoretical modeling of reference damage model 52 2.4.2. Development of rate-dependent damage modeling 57 3. PROGRESSIVE FAILURE ANALYSIS USING EDPM 64 3.1 Material failure detection model 65 3.1.1. The Hashin composite failure criteria 65 3.1.2. The Rate-dependent Hashin failure criteria 68 3.2 Damage progression after material failure 71 3.2.1. Material degradation model – micromechanical approach 72 3.2.2. Enhanced damage progression model (EDPM) 81 3.3 Damaged element deletion 97 4. IMPLEMENTATION AND MODEL VERIFICATION 98 4.1 Implementation in the FE element analysis 99 4.1.1. Implementation of RDM using multi-scale approach 101 4.1.2. Implementation of PFA 103 4.2 Model verification 106 4.2.1. Verification for RDM 106 4.2.2. Verification for PFA model 116 5. DISCUSSION 127 6. CONCLUSIONS 135 REFERENCES 139Docto

    Optimized rotor design of UAV cyclocopter with cycloidal blades system

    No full text
    Thesis (master`s)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2004.Maste
    corecore