5 research outputs found

    AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1

    Get PDF
    AIDA最早是由林圣彩教授团队首先鉴定和命名的。2007年林圣彩教授团队与孟安明院士团队合作发现AIDA在斑马鱼体轴发育中的功能(Rui, 2007)。2018年,林圣彩教授团队首次发现了AIDA在哺乳动物中的功能,即AIDA介导的内质网降解途径通过降解脂肪合成途径中的关键酶,而限制膳食脂肪在肠道的吸收这一内在抵御肥胖(Luo, 2018)。而本次成果揭示了AIDA在棕色脂肪组织中特定的功能。这些工作将AIDA引入了脂质应激代谢的重要环节,包括脂质吸收和依赖于脂质的产热过程。该论文的共同第一作者为生命科学学院博士生史猛和硕士生黄晓羽,林圣彩教授和林舒勇教授则为共同通讯作者。【Abstract】The sympathetic nervous system–catecholamine–uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1.Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice.The PKA–AIDA–UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.We thank Y. Li, E. Gnaiger, T. Kuwaki, J. R. B. Lighton, E. T. Chouchani and D. Jiang for technical instruction; X. Li and X.-D. Jiang (Core Facility of Biomedical, Xiamen University) for raising the p-S161-AIDA antibody; the Xiamen University Laboratory Animal Center for the mouse in vitro fertilization service and all the other members of S.C.L. laboratory for their technical assistance. This work was supported by grants from the National Key Research and Development Project of China (grant no. 2016YFA0502001) and the National Natural Science Foundation of China (grant nos 31822027, 31871168, 31690101, 91854208 and 82088102), the Fundamental Research Funds for the Central Universities (grant nos 20720190084 and 20720200069), Project ‘111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (grant no. BP2018017), the Youth Innovation Fund of Xiamen (grant no. 3502Z20206028), the Natural Science Foundation of Fujian Province of China (grant no. 2017J01364) and XMU Training Program of Innovation and Entrepreneurship for Undergraduates (grant no. 2019×0666). 该工作得到了厦门大学实验动物中心和生物医学学部仪器平台的重要协助和国家重点研究和发展项目,国家自然科学基金,厦门大学校长基金等的支持

    新疆阜康市草地生态赤字及成因分析

    No full text
    应用生态足迹法研究了新疆阜康市总体生态安全以及草地生态安全状况,剖析了阜康市草地生态赤字的成因,并在此基础上提出了应对策略。研究结果表明:1981年到2004年,阜康市总的可利用人均生态承载力降低了13%,而总的人均生态足迹升高了180%,生态赤字逐年加大,总体生态安全形势严峻。其中,草地生态赤字问题特别突出,草地人均生态承载力从1981年的0.2486 hm2减少到2004年的0.1374 hm2,减少44.8%,而草地人均生态足迹则从1981年的0.2456 hm2增加到2004年的1.2186 hm2,增加500%,草地生态严重赤字,已成为最主要的生态不安全因素。造成草地生态严重赤字的原因是工业化和城市化的迅猛发展,必须通过提高草地资源利用效率、增加草地生产用地的面积、提高草地的质量、控制人口数量等措施最终实现草地生态系统的可持续利用

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore