4 research outputs found

    在InGaAsP/InP双异质结构中的光弹效应及其对侧向光的限制作用

    No full text
    从理论上计算了厚度为110nm的W_(0.95)Ni_(0.05)金属薄膜应变条在InGaAsP/InP双异质结构中形成的应力场分布,及由应力场分布引起的折射率变化。在W_(0.95)Ni_(0.05)金属薄膜应变条半导体中0.2-2μm深度范围内,由应变引起条形波导轴中央的介电常数ε相应增加2.3×10~(-1)-2.2×10~(-2)(2μm应变条宽)和1.2×10~(-1)-4.1×10~(-2)(4μm应变条宽)。同时,测量了由W_(0.95)Ni_(0.05)金属薄膜应变条所形成的InGaAs/InP双异质结光弹效应波导结构导波的近场光模分布。从理论计算和实验结果两方面证实了InGaAsP/InP双异质结光弹效应波导结构对侧向光具有良好的限制作用

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore