8 research outputs found

    THE INFLUENCE OF TRANSFER LINE BETWEEN COMPRESSOR AND COOLER FINGER

    No full text
    针对高频脉冲管制冷机实际应用中引入的连管进行了研究,实验结果表明加长连管导致性能下降的关键因素在于流动阻力损失,在选取时应尽量减少连管长度,在长度无法改变的情况下,可以选用较大直径的连管以减少流动损失,另外运行在略低的频率也会对制冷性能下降有所改善

    30K单级高频同轴脉冲管制冷机

    No full text
    介绍了一套实用型单级高频同轴脉冲制冷机工作在深低温区的性能特性。输入功率为200 W时,冷头无负荷最低温度可达到29.35 K,输入功率为235 W时,冷头无负荷温度可稳定在28.55 K。这是目前国内无多路旁通的单级高频脉冲管制冷机获得的最低温度,国际上位于先进行列。200 W输入条件下,35.6 K可提供0.5W制冷量,为30 40 K温区相关的小冷量应用提供了一种简单有效的方法

    80K高频无磁非金属脉冲管制冷机

    No full text
    介绍了高频脉冲管制冷机冷指无磁非金属材料的选择、加工以及实验优化工作。制作的高频无磁脉冲管制冷机冷指在风冷,2.3 MPa充气压力,44 Hz,70 W电功率输入条件下,最低达到73.4 K的无负荷最低温度;60 W电功率输入,最低温度为74.0 K,在80 K时可以提供0.1 W的制冷量。本文为高频脉冲管制冷机直接冷却相关低温超导器件提供了坚实的基础

    高频无磁脉冲管制冷机尼龙丝网分析

    No full text
    要为冷却包括SQUID在内的高灵敏度高温超导器件,开发了液氮温区无磁非金属材料制作的高频脉冲管制冷机冷指,在风冷、60W输入条件下可达到74K制冷温度,80K提供0.1W制冷量。作为无磁非金属化的关键,回热器蓄冷填料无磁化采用了尼龙丝网,以取代常用的不锈钢丝网。本文分析表了由此带来的热容,换热和流动阻力方面的变化

    OPTIMIZATION of TUNNEL JUNCTION IN IMM MULTI-JUNCTION SOLAR CELLS

    No full text
    利用MOCVd设备进行倒装多结III-V族半导体化合物太阳电池隧穿结的外延优化。利用Xrd和SEM对样品进行结构分析,结果表明样品晶格质量较高,晶格匹配度良好;通过芯片工艺后,获得所需太阳电池片,I-V电学测试结果表明隧穿结带隙、厚度和掺杂是影响隧穿效应的重要因素。在隧穿结区厚度为40nM时掺杂浓度P型高达7x1019CM-3,n型高达3x1019CM-3条件下,隧穿结峰值电流能满足1000倍聚光条件下大隧穿电流的要求。在未蒸镀减反射层时,AM1.5d、1000倍聚光、25℃、lOW-AOd条件下,测得倒装双结太阳电池的VOC=2.776V,ISC=10.63A,ff=82.4%,Eff=24.27%。The MOCVD epitaxial growth process of the tunnel junctions in IMM solar cells was studied.After the growth,the structural analysis as XRD and SEM show the high crystal quality of the epi-layers.I-V measurement indicates that tunnel effects strongly depend on the thickness, band gap and the doping level of the tunnel junction.When the thickness is 40nm,the carrier concentration of the p region is above 7 × 1019cm- 3and n region is above 3 × 1019cm- 3,the peak current of the tunnel junction can meet the current requirement of the triple junction solar cell under the 1000 suns.Without the ARC,under 1000 suns,AM1.5D,25℃,Low-AOD conditions,the inverted dual junction solar cell get the Voc= 2.776V,Isc= 10.63A,FF = 82.4%,Eff = 24.27%.国家高技术研究发展(863)计划(2012AA051402

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore