200 research outputs found
大口径光学元件的精密磨抛与检测装备开发及应用
大口径光学元件超精密加工是一个复杂的系统性工程,涉及精密机床、数控、加工技术与工艺、精密检测和补偿控制等机电控各领域的专业知识,其发展与一个国家的高端制造技术及装备发展能力息息相关,也是一个国家综合国力的集中体现。主要介绍了厦门大学微纳米加工与检测联合实验室在大口径光学元件超精密加工技术及装备方面取得的研究进展,针对大口径光学元件磨削和抛光两个加工流程及其配套的精密检测技术,详细阐述了磨削装备及单元技术、可控气囊抛光机床及相关单元技术、精密检测装备及相关单元技术等的研究应用情况。这些技术研究从超精密加工的需求出发,借鉴国内外的研究经验和成果,通过对装备、工艺、检测等各方面整合,形成了具有自主知识产权的集磨削、抛光和检测装备及工艺技术的大口径光学元件超精密加工体系,这些技术与装备确保了大口径光学元件的高质量超精密加工。国家自然科学基金项目(51675453);;深圳科技计划项目(JCYJ 20160517103720819
Mid-spatial Frequency Error Identification of Precision Optical Surface Based on Empirical Mode Decomposition
对于高端光学元件,除限制低频面形误差和高频表面粗糙度之外,需要严格控制中频误差,以确保其使用性能。目前国际上广泛采用功率谱密度(POWEr SPECTrAl dEnSITy,PSd)曲线评价中频误差,该方法以fOurIEr变换为基础,在全局水平上给出中频误差的综合评价。但是,光学元件磨削与抛光工艺过程中,局部波动和变周期波动是常见的中频误差存在形式。为更加准确地评价中频误差,指导补偿加工,需要识别中频误差频率及位置信息。鉴于此,从光学表面属于非平稳空间信号的角度出发,提出基于经验模态分解的精密光学表面中频误差提取和识别方法,对光学表面拟合残差进行经验模态分解,得到一系列固有模态函数,根据各阶固有模态函数特征,识别不同空间位置存在的表面误差和波动频率,并将其合成得到光学表面的中频和高频误差。仿真与实际检测结果分析证实该方法可以有效识别中频误差特征及其方位。Mid-spatial frequency surface error of optical lens is crucial to the performance of high-energy laser systems and high-resolution optical systems.Power spectrum density(PSD) is generally employed to evaluate mid-spatial frequency error of optical surface.PSD is based on Fourier transform which averages local characters to the whole space.And it gives a whole evaluation of mid-spatial frequency error of optical surface.It not only weakens characters but also loses location information of surface error.Abrasive processing,such as grinding and polishing,always introduces local waviness with time-varying frequency on optical lens surface,PSD fails for this situation.A new error separation method,which is based on empirical mode decomposition,is introduced in this paper in order to more accurately evaluate mid-spatial frequency error and guide compensation machining.Curve of optical surface is preliminary fitted and the difference between the origin data and the fitting curve is decomposed to a series of intrinsic mode functions(IMFs).Local waviness characters of optical lens surface and its frequency can be recognized from each IMF and the corresponding instantaneous frequency plot.All IMFs are divided into high-frequency group and mid-spatial frequency group by average of instantaneous frequency of each IMF considering with IMF characters.IMFs in the same group are added to acquire high-frequency error or mid-spatial frequency error of optical surface.The simulation and experimental results of optical surface with different machining methods are employed to validate the effectiveness and correctness of the method.国家自然科学基金(51075343); 福建省自然科学基金(2012J05098)资助项
Technology and Application of Ultra-precision Machining for Large Size Optic
大口径光学元件超精密加工技术是多种学科新技术成果的综合应用,促进了民用和国防等尖端技术领域的发展,在国家大光学工程的推动下,我国的超精密加工技术取得显著的成果。围绕大口径光学元件“高精度磨削+确定性抛光“超精密加工体系,介绍该领域研究进展及厦门大学微纳米加工与检测联合实验室取得的相关研究成果,主要针对光学元件磨削和抛光两个加工流程,详细分析磨削装备技术、磨削工艺技术、精密检测技术、可控气囊抛光技术、加工环境监控技术和中频误差评价技术等关键技术的研究应用情况。这些技术研究从超精密加工的需求出发,借鉴国内外的研究经验和成果,通过对装备、工艺、检测等各方面整合,形成具有自主知识产权的大口径光学元件磨抛超精密加工体系,从而实现大口径光学元件高精度、低缺陷加工。The ultra-precision machining technology of large size optic is a comprehensive application of various sciences, which promotes the development for civil and national defense use.Under the processing of national optical project, our country makes great progress in this field.The development of ultra-precision machining technology for large size optic in micro/nano machining and measuring laboratory of Xiamen University is introduced, particularly in grinding equipment, grinding process, precise measuring, controlled bonnet polishing, environment monitoring, mid-spatial frequency error assessing and et al.From the requirement of the ultra-precision machining, the laboratory uses the experience of other countries for reference and integrates the above technology, then forms an intellectual property of grinding and polishing system independently for large size optic manufacture.国家自然科学基金(51075343;51275433); 国家科技重大专项(2011ZX04004-061;2013ZX04001000-206)资助项
Stitching Measurement Technique for Large-aperture Aspheric Surface during Grinding Process
为实现对磨削加工阶段大口径非球面光学元件的精密测量,提出一种基于坐标测量的多段拼接综合优化数据处理模型。基于多体系统理论、最小二乘原理建立两段面形轮廓拼接数学模型;提出基于曲率原理和非球面方程最小二乘拟合的冗余数据剔除数学模型;建立多段拼接的综合优化处理模型;利用TAylOr HObSOn轮廓仪对口径为176 MM的非轴对称非球面光学元件的3条母线进行分段测量试验并通过文中提出的数学模型进行数据拼接处理,试验结果表明,拼接测量结果与单次测量结果相比,误差最大值的平均值为0.25μM,最小值的平均值为–0.22μM,比该光学元件的面形峰-谷值2.77μM高出一个数量级,达到检测要求。试验结果证明所提多段拼接综合优化数据处理模型的正确性及有效性,该模型可以进行工程应用。In order to test large-aperture aspheric surface optice element accurately during grinding process, a comprehensive optimization data processing model of stitching measurement is proposed based on coordinate measuring.Firstly, the stitching model for two segments of surface shape contour is built based on multi-body system theory and least square principle; secondly, the rejecting redundant data model is built based on curvature principle and least square fitting of aspheric equation; then the comprehensive optimization processing model for multiple segments stitching is built; three generatrices of a non-axisymmetry aspherical optical element whose aperture is 176 mm is stitching measured by Taylor Hobson profilometer and the data is processed by the model mentioned in the text.The results show that the maximum average error of the stitching measurement is 0.25 μm, and the minimum average error of the stitching measurement is –0.22 μm which is compared with the single measurement.The error is an order of magnitude higher than the surface shape peak–valley value 2.77 μm of the optic element, and matches the measurement requirements.The experimental results prove the correctness and effectiveness of the comprehensive optimization data processing model of stitching measurement, and the model can be applied in engineering.国家自然科学基金资助项目(51075343;51275433
Interface tracking and numerical simulation of micro-bubble controlled growth in micro restrained space
通过对微机电系统微流体器件中气泡生长实验结果的分析,考虑加热元表面液体微层的作用,将微气泡生长分为晶核形成、球形气泡、受侧壁挤压的气泡、沿微通道生长的气泡4个阶段,建立了矩形微通道内微气泡控制生长物理模型;采用Level Set Method模拟了矩形微通道内微气泡控制生长过程,获得了微气泡生长特性。数值模拟结果表明:微气泡初期生长速率较快,后期由于凝结率增大使生长速率减缓;液体温度、微通道宽度、微加热元宽度、加热电压等均对气泡生长始点和生长速率有显著影响。Based on the experimental results of micro-bubble controlled growth in MEMS(micro-electro-mechanical system)devices,the bubble growth process could be divided into four stages,namely,nucleating,spherical bubble,bubble restrained by lateral wall,bubble elongating along the channel.A physical model of micro-bubble growth in the rectangular microchannel was established by considering the micro layer of liquid in the heater.Numerical simulation of micro-bubble growth in the micro restrained space was performed by the Level Set Method and the characteristics of micro-bubble growth were obtained and analyzed.The simulated data showed that micro-bubble grew rapidly in the early stage but grew slowly in the late stage due to the increasing condensation rate on the interface.The results also indicated that the initial temperature of liquid,width of the microchannel,width of the microheater,and the heating voltage had remarkable effects on the bubble inception and bubble growth rate.国家自然科学基金项目(50406019);; 中国博士后科学基金项目(2004035669);; 江苏省博士后科学研究资助计划项目(苏人通2004[计]300号)~
Kinetic analysis of moisture absorption and retention for HA and two new types of chitin moisturizers
[中文文摘]分别研究了透明质酸与两种甲壳素类新保湿剂在RH81%和RH43%时的吸湿动力学特性,以及在RH43%时的保湿动力学特征.结果表明它们的吸湿和保湿行为均符合二级吸附动力学方程,相关系数均达0.999以上.表明它们的吸湿过程主要受化学作用的控制.[英文文摘]Kinetic analysis of moisture absorption under RH81% and RH43%,and moisture retention under RH43% for Hyaluronic Acid(HA) and two new types of Chitin moisturizers were studied.The results showed that,the Second-Order Model of adsorption kinetic equation can characterize the adsorption process very well and the relation coefficients are all higher than 0.999.It means the adsorption processes of three moisturizers are controlled by chemistry effect.国家自然科学基金(20374041); 福建省自然科学基金(E0310002,E0510003); 厦门市科技计划项目(3502Z20055013)资助项目
轮状病毒VP4~*高聚体的制备及其免疫保护性评价
在前期工作中发现,截短的轮状病毒VP4~*蛋白(aa26–476)在大肠杆菌中能够以可溶形式表达,且在小鼠模型中具有较高的免疫原性和免疫保护性。本研究通过颗粒化进一步提高VP4~*蛋白的免疫保护性。通过37℃水浴加热处理24h使VP4~*蛋白多聚化,通过高效液相色谱、透射电镜、分析超离等分析VP4~*蛋白颗粒化程度,通过酶联免疫吸附试验分析颗粒化对VP4~*蛋白与中和抗体反应性的影响;通过差示量热法分析VP4~*高聚体的热稳定性;最后,通过小鼠母传抗体模型研究颗粒化对VP4~*免疫原性和免疫保护性的影响。结果表明,VP4~*蛋白高聚体结构均一,并且相比三聚体,具有更高热稳定性和中和抗体结合活性;在内毒素<20 EU/mg的条件下,与铝佐剂混合,刺激小鼠产生更高滴度的中和抗体;对轮状病毒导致的腹泻具有更高的免疫保护性。综上所述,VP4~*高聚体的研究为轮状病毒基因工程亚单位疫苗的研制提供了更广阔的思路。国家自然科学基金(No.81501741);;福建省科学技术创新平台(No.2014Y2004)资助~
On-line measurement and evaluation of spindle error motion in ultra precision machine tool
为了实现对超精密机床主轴回转误差的在线测试与评价,建立了纳米级在线测试与评价系统。对该系统所采用的测试仪器、干扰抑制、数据处理与指标评价方法进行研究。首先,在某台超精密切削机床上搭建了由5个电容传感器组成的5通道测试模块。接着,以多通道高速数据采集模块实现多通道位移数据模拟量的高速采集。然后,对采集的信号进行必要的干扰信号分离。最后,将5通道位移数据转换为易于理解的轴向误差和径向误差数据,并按照同步误差和异步误差进行分离。测试结果表明:该机床主轴工作转速下的径向同步误差为405 nM,径向异步误差为66 nM;轴向同步误差为59 nM,轴向异步误差为54 nM。能够实现超精密机床主轴回转误差的纳米级在线测试,对于超精密光学加工表面的误差溯源和机床主轴性能分析具有重要意义。In order to realize the on-line measurement and analysis of spindle error motion in ultra precision machine,a nano-class testing and evaluation system is established and its measurement instruments,interference control,data processing,evaluation methods and etc.are investigated.Firstly,a five-channel module consisted of five capacitance sensors is established on an ultra precision cutting machine.All the five channels of the displacement sensors are sampled via a high speed data acquisition system simultaneously.Secondly,the separation of interference signals from displacement sensors has been carried out.Finally,the displacement signals are transformed into radial error and axial error,and are separated as synchronous and asynchronous error.Experimental results indicate that the synchronous error and the asynchronous error in radial direction are 405 nm and 66 nm respectively,and the synchronous error and the asynchronous error in axial direction are 59 nm and 54 nm respectively.It can meet the system demands of nano-class,on-line measurement of ultra precision spindle.Thus,it is of great importance for the optical work piece's surface error tracing,and the spindle's performance analyzing.高档数控机床与基础制造装备“强激光光学元件超精密制造关键装备研制”(2013ZX04006011-102-001
- …
