9 research outputs found

    煤种对含煤球团还原速度的影响

    No full text
    研究了在1223 ̄1473K的氮气氛中3种不同挥发分煤粉的粒度、铁精矿粉粒度、温度及碳-氧摩尔比对含煤球团还原速度的影响。发现降低煤粉或铁精矿粉粒度,提高温度或碳-氧摩尔比可提高含煤球团的还原速度,且这4种因素对还原速度的影响程度随煤种挥发分的降低而增大。分别采用以碳气化反应、气相内扩散、界面反应为控制环节而得出的表达含煤球团反应过程的速度方程处理本研究数据,发现3种速度方程(4种表达形式)均能

    煤种对含煤球团还原速度的影响

    No full text
    研究了在1223~1473K的氮气氛中3种不同挥发分煤粉的粒度、铁精矿粉粒度、温度及碳—氧摩尔比对含煤球团还原速度的影响。发现降低煤粉或铁精矿粉粒度,提高温度或碳—氧摩尔比可提高含煤球团的还原速度,且这4种因素对还原速度的影响程度随煤种挥发分的降低而增大。分别采用以碳气化反应、气相内扩散、界面反应为控制环节而得出的表达含煤球团反应过程的速度方程处理本研究数据,发现3种速度方程(4种表达形式)均能较好地与本研究数据吻合。比较由不同速度方程计算出的速度常数而得出的含煤球团的活化能,发现对含3种不同挥发分煤的球团,以气相内扩散为控制环节的活化能均较以碳气化反应或界面反应为控制环节的活化能大,由此可推断含煤球团还原过程应由气相内扩散控制。含高挥发分煤的球团的气相内扩散活化能较含低挥发分煤的球团的活化能低,可推断前者的还原速度较快

    含碳球团还原机理研究

    No full text
    在1223~1473K的N2气氛下研究了石墨粉粒度、铁精矿粉粒度、温度、碳含量对含碳球团还原速度的影响.结果表明,石墨粉和铁精矿粉粒度越小,还原温度和碳含量越高,含碳球团还原速度越大.基于碳气化反应、气相扩散和界面反应的含碳球团还原速度方程均能较好地处理本研究的数据。根据Arrhenius方程计算出的碳气化反应和界面反应活化能分别为227.7和294.14kJ/mol;计算出的气相扩散为限制环节的含碳球团还原活化能为391.26~411.37kJ/mol.因此本研究条件下含碳球团还原似应由气相扩散所控制

    含碳球团还原过程中反应分数、还原度和金属化率的关系

    No full text
    推导了含碳球团的反应分数、还原度和金属化率间的关系。根据这些关系处理失重试验的数据可确定含碳球团中金属Fe、FeO、Fe2O3的变化

    含碳球团还原机理研究

    No full text
    在1223-1473K的N2气氛下研究了石墨粉粒度、铁精矿粉粒度、温度、碳含量地含碳球团的速度的影响,结果表明,石墨粉和铁精矿粉粒度越小,还原温度和碳含量越高,含碳才还原速度越大,基于碳气化反应、气相扩散和界面反应和含碳球团的速度方程均能较好地处理本研究的数据,根据Arrhenius方程计算出的碳敢化反应和界面反应活化能分别为227.7和294.14kJ/mol;计算出的气相扩散为限制环节的含碳

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore