4 research outputs found

    单域抗体的研究和应用进展

    Get PDF
    传统IgG抗体分子一般由轻链和重链组成,轻链包含1个可变区(VL)和1个恒定区(CL),重链包含1个可变区(VH)和3个恒定区(CH1,CH2,CH3)。单域抗体(Single domain antibody,sdAb),是指缺失抗体轻链而只有重链可变区的一类抗体,因其分子量小,也被称为纳米抗体(Nanobody)。20世纪90年代,单域抗体最早在骆驼科动物中被发现,之后在护士鲨、大星鲨和鳐鱼等软骨鱼纲动物中也发现了类似的抗体。单域抗体虽然结构简单,但仍然可以达到与传统抗体相当甚至更高的与特异抗原结合的亲和力。相比于传统抗体,单域抗体具有分子量小、稳定性强、易于重组表达等优点。近年来在生物学基础研究和医学临床应用方面均备受关注并被广泛应用。文中将从单域抗体的结构特征、理化性质、筛选方法及其在生物医学领域的重要应用进展进行综述。国家自然科学基金(No.81672023)资助~

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore