6 research outputs found

    Novel Molten-salt Electrolysis Processes towards Low-carbon Metallurgy

    No full text
    本文重点介绍“氯化物熔盐体系电解还原固态氧化物冶金过程的高效化”和“氯化物熔盐体系电裂解硫化物及熔融碳酸盐与熔融氧化物体系电分解氧化物无温室气体排放冶金”的研究进展,结合武汉大学的部分代表性工作阐述了相关技术的原理,以期揭示熔盐电解技术在节能减排和资源高效利用上的优势及其发展前景,为发展短流程、低碳高效的电化学冶金工业提供理论和技术支持。This review focuses on recent developments in molten-salt electrolytic metallurgical processes with respect to 1) high-efficiency metallurgical technologies via electrolytic reduction of solid oxides in molten chlorides and 2) zero-carbon-footprint electrochemical splitting metallurgical technologies. Initiating with an introduction on dynamic solid/solid/liquid three-phrase interlines electrochemistry for electrochemical reduction of solid cathode, the former aspect is discussed in terms of facilitating mass transfer throughout solid cathode, one-step production of functional alloy powders with the assistance of under-potential electroreduction of active metals and near-net-shape production of metal/alloy components. Whilst the latter is summarized by introducing some zero-carbon molten-salt electrolytic technologies including electro-splitting of solid sulfides in molten chlorides, electrometallurgical technology in molten carbonates and molten oxide electrolysis. With an attempt to demonstrate the proof-of-concept, the merits of molten-salt electrolytic technologies on environmental viability, energy-profitability and resource-utilization are also justified and highlighted, which, as hope, could form a basis for developing novel electrolytic processes for clean, energy-efficient and affordable metallurgy of materials.国家自然科学基金项目(No. 20125308,No. 50374052,No. 20573081,No. 20873093,No. 51071112)资助作者联系地址:武汉大学资源与环境科学学院,湖北 武汉 430072Author's Address: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, Hubei, China通讯作者E-mail:[email protected]

    Highly Efficient CO2 Utilization via Molten Salt CO2 Capture and Electrochemical Transformation Technology

    Get PDF
    高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.The molten electrolytes exhibit high CO2 absorption capacities, wide electrochemical windows and excellent reaction kinetics, which are promising electrolyte candidates for efficient capture and electrochemical conversion of high-flux CO2 driven by renewable and clean electricity sources. This short review introduces the recent advancements of CO2 electroreduction achieved by the authors using molten salt CO2 capture and electrochemical transformation (MSCC-ET) technology, involving CO2 absorption kinetics, cathodic kinetics, controllable synthesis of carbon products with unique nanostructures, development of inert oxygen evolution anodes and CO2 conversion efficiency as well as energy efficiency. The challenges and prospects are also discussed based on the critical review.国家自然科学基金(51325102);国家自然科学基金(21673162);国家自然科学基金(51874211);科技部国际合作专项(2015DFA90750)通讯作者:汪的华E-mail:[email protected]:WANGDi-huaE-mail:[email protected]武汉大学资源与环境科学学院,湖北 武汉 430072School of Resources and Environmental Science, Wuhan University, Wuhan 430072, Hubei, Chin

    46.7MeV/u~(12)C诱发核反应中非稳态产物的布居及核温度的提取

    No full text
    本文报道了在46.7MeV/u~(12)C诱发的核反应实验中,利用测量轻带电粒子关联函数,来研究非稳定核及低激发核的粒子衰变方式的实验结果。在假定统计平衡的条件下提取了有关核温度参量,并研究了不同反应机制及靶核对提取的核温度的影响

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore