6 research outputs found

    Ion-implanting Modification of Layered Manganese Dioxide and Its Electrochemical Performance

    No full text
    应用高温热解法合成层状二氧化锰(δ-MnO2),借助离子注入技术在其表层注入钛离子,形成复合材料(δ-MnO2-Ti).材料结构及形貌由XRD、SEM及XPS表征,用恒电流充电仪测定其电化学性能.结果表明:注入钛离子后形成新的复合材料,其MnO2的层状结构没有被破坏,钛离子主要以Ti(Ⅳ)态嵌入MnO2结构.与δ-MnO2相比,改性后的δ-MnO2-Ti首次放电比容量和最大放电比容量均有明显提升.Layered MnO2(δ-MnO2) was prepared by thermal decomposition of potassium permanganate.Ti was ion-implanted into such δ-MnO2 by physical techniques,forming a composite(δ-MnO2-Ti).These materials were characterized by XRD,SEM,XPS techniques and their electrochemical proprieties were investigated.The results showed that the layered structure of δ-MnO2 did not been destroyed after Ti ion implantation,and the implanted Ti element was mainly Ti4+ as indicated by XPS.Both of the first and the highest discharge specific capacities of the ion-implanted layered MnO2(δ-MnO2-Ti),compared to those of δ-MnO2,were improved significantly.作者联系地址:三明学院化学与生物工程系,厦门大学固体表面物理化学国家重点实验室厦门大学化学系,厦门大学固体表面物理化学国家重点实验室厦门大学化学系,三明学院化学与生物工程系,厦门大学固体表面物理化学国家重点实验室厦门大学化学系 福建三明365004,厦门大学固体表面物理化学国家重点实验室,厦门大学化学系,福建厦门361005,福建厦门361005,福建厦门361005,福建三明365004,福建厦门361005Author's Address: 1.Department of Chemical and Biological Engineering,Collage of Sanming,Sanming 365004,Fujian,China,2.State Key Lab for Physical Chemistry of solid Surface,Department of Chemistry,Xiamen University,Xiamen 361005,Fujian,Chin

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore