5 research outputs found

    多股并联蛇形导线无线充电线圈的力电特性分析及优化设计

    No full text
    无线充电系统的电能利用率和功能可靠性是人们关注的重要问题。为获得高弹性延伸率、低电阻的柔性电感线圈,提出了多股并联蛇形导线无线充电线圈的设计思路。首先,对比研究了多股并联蛇形导线和单股蛇形导线的电学性能和弹性延伸率,证明了多股并联导线的优势。同时考察了导线厚度,直线段长度以及圆弧段半径和圆心角对蛇形导线的电学性能和弹性延伸率的影响。结果表明,直线段长度、圆心角、圆弧段半径是影响蛇形导线的弹性延伸率的敏感参数。最后,通过正交实验优化了影响蛇形导线弹性延伸率和电阻的敏感参数,优化后的柔性可延展线圈的电阻降低了13.5%和弹性延伸率提高了34.3%。研究结果为柔性可延展的无线充电线圈优化设计提供理论指导

    一种基于梯度叠层缓冲层薄膜的外延生长Al<sub>m<-sub>Ga<sub>1<-sub>‑<sub>m<-sub>N的方法

    No full text
    本发明涉及一种基于梯度叠层缓冲层薄膜的外延生长AlmGa1‑mN的方法。具体地,本发明公开了一种复合材料以及所述复合材料的制备方法和应用。所述复合材料所包含的外延薄膜的位错密度、薄膜裂纹密度和薄膜表面粗糙度得到综合改善,因此可获得晶体质量、薄膜完整性和表面形貌平衡提升的复合材料,同时,基于这种复合材料可以大大缩短外延芯片的生长时间,全面提升包含所述复合材料的光电器件或功率器件的性能和产率。所述方法具有工艺简单、成本低、产品良率高等特点

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore