4 research outputs found

    Recent Advances on Carbon and Transition Metallic Compound Electrodes for High-Performance Supercapacitors

    No full text
    超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注. 电极材料是超级电容器的关键组成部分, 决定了超级电容器性能的好坏. 近来大量研究以碳材料和过渡金属化合物作为电极材料. 然而, 碳材料电容值极小与过渡金属化合物导电性和稳定性差, 极大地限制了它们在超级电容器中的应用. 本综述重点介绍了我们课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作, 并讨论了材料构效关系及其调控机理. 最后对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.Supercapacitors (SCs) have stimulated intensive interests for their promising applications in electric vehicles and portable electronics, etc. Electrode material is the most important key component of SCs, which vastly determines the performance of SCs. Carbon and transition metallic compound materials have attracted considerable attention and been widely explored as electrode materials. However, the insufficient capacitance of carbon materials and unsatisfactory conductivity and cyclic stability of transition metallic compounds severely limit their implementation as robust SC electrodes. Herein, we highlight our recent efforts to boost the capacitive performance of carbon and metal oxide/nitride electrodes by rationally structural and componential design. The relationships between structures and performances,  as well as the mechanisms are discussed. Finally, we also present our personal perspectives on the further research of these electrodes.This work was supported by the Natural Science Foundation of China (21403306, and 2016YFA0202604), Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306048), Pearl River S&T Nova Program of Guangzhou (201610010080), Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2015TQ01C205) and Technology Planning Project of Guangdong Province (2015B090927007).This work was supported by the Natural Science Foundation of China (21403306, and 2016YFA0202604), Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306048), Pearl River S&T Nova Program of Guangzhou (201610010080), Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2015TQ01C205) and Technology Planning Project of Guangdong Province (2015B090927007).作者联系地址:中山大学化学学院,广东 广州,510275Author's Address: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China通讯作者E-mail:[email protected]; [email protected]

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore