7 research outputs found

    东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用——以黄山铜镍矿床为例[J]

    No full text
    位于黄山-镜儿泉镁铁-超镁铁岩带西段的黄山铜镍矿田(包括黄山、黄山东、香山、黄山南矿床),是北疆最重要的镍矿产地。矿田内各岩体都是多期岩浆侵位形成的杂岩体,且黄山东和香山铜镍矿床存在多期成矿作用。本文选取黄山大型隐伏铜镍矿床进行详细解剖,在此基础上探讨东天山地区多期成岩成矿作用及其勘查意义。黄山矿山开采揭露最新地质现象系统观察,不同岩相中橄榄石、辉石(粒径、成分)的垂向和平面剖面变化表明黄山铜镍矿床由多期岩浆侵位形成,且第三期次为主要成矿期。第三期次岩相主要由角闪二辉橄辉岩、角闪方辉橄辉岩和角闪橄榄岩组成。角闪二辉橄辉岩底部的橄榄石核部和边部具有明显的成分差异,其橄榄石的边部相对于核部Fo值和..

    东天山圪塔山口铜镍矿区镁铁-超镁铁质岩体橄榄石与尖晶石矿物学特征/Mineralogical Characteristics of Olivine and Spinel for Getashankou Cu-Ni-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan, NW China[J]

    No full text
    新近发现的圪塔山口含铜镍矿化镁铁-超镁铁质岩体位于新疆东天山黄山-镜儿泉铜镍矿带东端,共有4个镁铁-超镁铁质岩体,其中Ⅰ、Ⅱ、Ⅲ号岩体均见铜镍硫化物矿化,研究表明其形成时代(282Ma)及岩浆来源与东天山地区其它铜镍矿化镁铁-超镁铁质岩体一致.本文对主要造岩矿物橄榄石及副矿物尖晶石进行了显微镜下观察及电子探针分析,结果表明橄榄石Fo值介于83.1~ 86.6之间,平均85.2,为贵橄榄石,其Ni含量变化于1273×10-6~ 2719 × 10-6,平均1918×10 6;尖晶石根据铝含量的不同可以分为高铝和低铝两种.圪塔山口岩浆为地幔源区发生15.8% ~18.8%的部分熔融,并有过剩橄榄石加入的玄武质岩浆经结晶分异作用形成的派生岩浆.对橄榄石分离结晶和硫化物熔离的计算模拟表明橄榄石结晶前,岩浆已经达到S饱和,结晶过程始终伴随硫化物的熔离作用,虽然早期结晶的橄榄石与硫化物熔体间发生了Fe-Ni交换,但仍有很好的铜镍成矿潜力

    东天山圪塔山口镁铁-超镁铁质岩体地球化学、锆石U-Pb年代学及其对Ni-Cu成矿的指示/Geochemistry and zircon U-Pb geochronology of Getashankou mafic-ultramafic intrusions, eastern Tianshan, and its implication for Ni-Cu mineralization[J]

    No full text
    新疆新近发现的圪塔山口镍铜硫化物矿床位于东天山康古尔-黄山镍铜硫化物成矿带的东端.矿区包含4个镁铁-超镁铁质岩体,其中Ⅰ、Ⅱ、Ⅲ号岩体均见镍铜硫化物矿化.本文利用SIMS锆石U-Pb法测得Ⅰ号矿化岩体辉长岩年龄为282.6±1.9Ma,不仅与东天山地区其它含Ni-Cu矿化的镁铁-超镁铁质岩体形成时代一致,而且与塔里木玄武岩、镁铁质岩墙及北山地区的镁铁-超镁铁质岩体形成时限相一致.其形成可能与造山后伸展背景下的地幔柱叠加作用有关.地球化学数据表明圪塔山口岩体具有高Mg特征,除2个辉长岩样品m/f值较低外,其余14个样品集中于2.73~ 5.05之间,属铁质超基性岩.岩石稀土元素配分模式为右倾式,轻、重稀土比2.64~3.39;含长角闪辉橄岩及部分含长角闪橄辉岩和含长橄辉岩δEu具正异常,可能与这3个岩相中存在斜长石的结晶有关.微量元素蛛网图表明岩石富集大离子亲石元素Cs、Rb、Ba、K、Sr,富集高场强元素U、Pb,亏损高场强元素Th、Nb等特征.主量元素SiO2-(Na2O +K2O)与(FeOT/MgO)-FeOT图解、微量元素相关图及微量元素比值相关图说明圪塔山口岩体成岩物质为来源于亏损地幔的钙碱性玄武质岩浆,成岩作用以岩浆结晶分异为主导,并受到地壳的混染作用,具有较好的镍铜硫化物矿床成矿潜力

    绿洲农业高效用水技术集成与示范

    No full text
    简要技术说明: 该成果围绕棉花、葡萄、小麦3大作物,从干旱绿洲区作物高效用水和提高作物水分生产效率的目标出发,研究形成了棉花高效用水技术模式3套、葡萄高效用水技术模式1套、小麦优化灌溉节水及配套栽培技术模式1套、干旱绿洲区农业高效用水管理技术模式1套,开发了15项农业节水关键技术和1套“农业灌溉决策支持系统”,筛选出节水配套抗旱小麦品种2个、抗旱棉花品种1个,制定了农业高效用水技术规程7项,研发了专利产品1项、软件著作权登记1项,人才培养12名、发表论文45篇。通过对高效灌溉技术、农艺高效用水技术、高效用水管理技术等3方面的关键技术的集成与创新,研究形成了干旱绿洲区特色作物(棉花、葡萄、..

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore