6 research outputs found

    Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling

    No full text
    国家重点研究开发项目No(2018YFB1502600);国家自然科学基金重点项目No(11932005);宁波市重大攻关项目No(2018B10048);浙江省能源集团有限公司科技项目资助No(ZNKJ-2018-008)通讯作者:朱建国,官万兵E-mail:[email protected];[email protected]:ZHUJian-guo,GUANWan-bingE-mail:[email protected];[email protected]. 江苏大学土木工程与力学学院,江苏 镇江2120132. 中国科学院宁波材料技术与工程研究所,浙江 宁波 3152013. 同济大学航空航天工程与力学学院,上海 2000924. 哈尔滨工业大学(深圳)理学院,广东 深圳5180555. 浙江浙能技术研究院有限公司,浙江 杭州 3111211. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China2. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China3. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China4. School of Science, Harbin Institute of Technology, Shenzhen 518055, China5. Zhejiang Energy Technology Research Institute Company Co. Ltd, Hangzhou 311121, Chin

    大连极紫外相干光源

    No full text
    先进光源的发展在前沿科学研究中发挥的作用越来越重要。近十年来,飞速发展的自由电子激光技术为科学家们提供了探索未知世界、发现新科学规律和实现技术变革的重要工具。建成的大连极紫外(EUV)相干光源的运行波段为50~150nm,单脉冲能量大于100μJ,且可提供10-12 s和10-13 s量级的超快激光脉冲,是我国第一台自由电子激光用户装置,并且是国际上唯一运行在极紫外波段的自由电子激光用户装置,在世界范围内为用户提供具有高峰值亮度和超短脉冲的极紫外激光。大连EUV相干光源是由国家自然科学基金委资助、由中国科学院大连化学物理研究所和上海应用物理研究所共同承担的重大科学仪器研制项目,目标是打造一个以先进极紫外光源为核心、主要用于能源基础科学研究的光子科学平台

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore