2,269 research outputs found

    Triple cascade behaviour in QG and drift turbulence and generation of zonal jets

    Get PDF
    We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjørtoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjørtoft argument

    Accretion disk in the eclipsing binary AU Mon

    Full text link
    We analyze the CoRoT and V-passband ground-based light curves of the interacting close binary AU Mon, assuming that there is a geometrically and optically thick accretion disk around the hotter and more massive star, as inferred from photometric and spectroscopic characteristics of the binary. Our model fits the observations very well and provides estimates for the orbital elements and physical parameters of the components and of the accretion disk.Comment: Accepted for publication in MNRA

    Investigation of Non-Stable Processes in Close Binary Ry Scuti

    Full text link
    We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.Comment: 11 pages, 6 figures, 2 table

    Specific features of state regulation of operations with cryptocurrencies in the conditions of digitalization

    Get PDF
    Purpose: The article investigates specific features of state regulation of operations with cryptocurrencies in the conditions of the world economy digitalization. Design/Methodology/Approach: In order to form the state regulation of operations with cryptocurrencies, which create additional risks for the national currencies functioning in international financial and credit relations, it is necessary to consider this phenomenon first, from the position of a complete ban on the use of cryptocurrencies as a means of payment, second, in combination of a ban on the use of cryptocurrencies as means of payment, third, from the possibility of expanding the range of cryptocurrency users by including legal entities into it and fourth, the full legalization of the cryptocurrency. Findings: The authors developed and proposed a set of measures aimed at the formation of common standards and norms of state regulation of operations with cryptocurrencies in international financial relations. Practical Implications: The results of the study can be applied in the development of legal regulation of virtual currencies not only at the national level, but also at the international level. Originality/Value: The main contribution of the study is to identify possible risks in the sphere of state regulation of cryptocurrencies based on the experience of some countries: from formal permission (including recommendations on possible risks) or the application of general principles of regulation in the field of payments to the complete ban of such activities.peer-reviewe

    Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties

    Full text link
    Numerical calculations illustrate the effect of the sign of the next nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model. Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown that introducing t' in the t-J model is equivalent to effectively renormalizing J, namely t' negative (positive) is equivalent to an effective t-J model with smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette toy model, and was observed also in calculations on small square clusters. Analyzing the transition probabilities of a hole-pair in the plaquette toy model, it is argued that the coherent propagation of such hole-pair is enhanced by a constructive interference between both t and t' for t'>0. This interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio

    The effective equation method

    Get PDF
    In this chapter we present a general method of constructing the effective equation which describes the behaviour of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behaviour of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three-- and four--wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. In the case of the NLS equation we use next some heuristic approximation from the arsenal of wave turbulence to show that under the iterated limit "the volume goes to infinity", taken after the limit "the amplitude of oscillations goes to zero", the energy spectrum of solutions for the effective equation is described by a Zakharov-type kinetic equation. Evoking the Zakharov ansatz we show that stationary in time and homogeneous in space solutions for the latter equation have a power law form. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanology

    Fourier analysis of wave turbulence in a thin elastic plate

    Full text link
    The spatio-temporal dynamics of the deformation of a vibrated plate is measured by a high speed Fourier transform profilometry technique. The space-time Fourier spectrum is analyzed. It displays a behavior consistent with the premises of the Weak Turbulence theory. A isotropic continuous spectrum of waves is excited with a non linear dispersion relation slightly shifted from the linear dispersion relation. The spectral width of the dispersion relation is also measured. The non linearity of this system is weak as expected from the theory. Finite size effects are discussed. Despite a qualitative agreement with the theory, a quantitative mismatch is observed which origin may be due to the dissipation that ultimately absorbs the energy flux of the Kolmogorov-Zakharov casade.Comment: accepted for publication in European Physical Journal B see http://www.epj.or

    Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors

    Get PDF
    BACKGROUND: It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1) ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice. RESULTS: The isolated anthrax hemolytic proteins AnlB (sphingomyelinase) and AnlO (cholesterol-binding pore-forming factor), as well as ClnA (B. cereus homolog of B. anthracis phosphatidyl choline-preferring phospholipase C) cause accelerated shedding of Synd1 and E-cadherin from epithelial cells and compromise epithelial barrier integrity within a few hours. In comparison with hemolysins in a similar range of concentrations, anthrax lethal toxin (LT) also accelerates shedding albeit at slower rate. Individual components of LT, lethal factor and protective antigen are inactive with regard to shedding. Inhibition experiments favor a hypothesis that activities of tested bacterial shedding inducers converge on the stimulation of cytoplasmic tyrosine kinases of the Syk family, ultimately leading to activation of cellular sheddase. Both LT and AnlO modulate ERK1/2 and p38 MAPK signaling pathways, while JNK pathway seems to be irrelevant to accelerated shedding. Accelerated shedding of Synd1 also takes place in DBA/2 mice challenged with Bacillus anthracis (Sterne) spores. Elevated levels of shed ectodomain are readily detectable in circulation after 24 h. CONCLUSION: The concerted acceleration of shedding by several virulence factors could represent a new pathogenic mechanism contributing to disruption of epithelial or endothelial integrity, hemorrhage, edema and abnormal cell signaling during anthrax infection
    corecore