7 research outputs found

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    No full text
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)

    The Design and Technology Development of the JUNO Central Detector

    No full text
    International audienceThe Jiangmen Underground Neutrino Observatory (JUNO) is a large scale neutrino experiment with multiple physics goals including deter mining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from the super nova, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive back ground and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, the usage of high strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment like the LS filling, overflowing and circulating system was done

    The Design and Technology Development of the JUNO Central Detector

    No full text
    International audienceThe Jiangmen Underground Neutrino Observatory (JUNO) is a large scale neutrino experiment with multiple physics goals including deter mining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from the super nova, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive back ground and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, the usage of high strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment like the LS filling, overflowing and circulating system was done

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    No full text
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)

    The Design and Technology Development of the JUNO Central Detector

    No full text
    International audienceThe Jiangmen Underground Neutrino Observatory (JUNO) is a large scale neutrino experiment with multiple physics goals including deter mining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from the super nova, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive back ground and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, the usage of high strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment like the LS filling, overflowing and circulating system was done

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    Get PDF
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    No full text
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)
    corecore