137 research outputs found
Unbinned Deep Learning Jet Substructure Measurement in High ep collisions at HERA
The radiation pattern within high energy quark- and gluon-initiated jets (jet
substructure) is used extensively as a precision probe of the strong force as
well as an environment for optimizing event generators with numerous
applications in high energy particle and nuclear physics. Looking at
electron-proton collisions is of particular interest as many of the
complications present at hadron colliders are absent. A detailed study of
modern jet substructure observables, jet angularities, in electron-proton
collisions is presented using data recorded using the H1 detector at HERA. The
measurement is unbinned and multi-dimensional, using machine learning to
correct for detector effects. All of the available reconstructed object
information of the respective jets is interpreted by a graph neural network,
achieving superior precision on a selected set of jet angularities. Training
these networks was enabled by the use of a large number of GPUs in the
Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed
in the laboratory frame, using the jet clustering algorithm.
Results are reported at high transverse momentum transfer GeV,
and inelasticity . The analysis is also performed in sub-regions
of , thus probing scale dependencies of the substructure variables. The
data are compared with a variety of predictions and point towards possible
improvements of such models.Comment: 33 pages, 10 figures, 8 table
B-flavor tagging at Belle II
We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom ( ) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb−1
, collected at the resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be
εeff=(30.0±1.2(stat)±0.4(syst))%
for a category-based algorithm and
εeff=(28.8±1.2(stat)±0.4(syst))%
for a deep-learning-based algorithm
Observation of decays using the 2019-2022 Belle II data sample
We present a measurement of the branching fractions of four decay modes. The measurement is based on data from
SuperKEKB electron-positron collisions at the resonance
collected with the Belle II detector and corresponding to an integrated
luminosity of . The event yields are extracted from fits
to the distributions of the difference between expected and observed meson
energy to separate signal and background, and are efficiency-corrected as a
function of the invariant mass of the system. We find the branching
fractions to be: where the first uncertainty is statistical and
the second systematic. These results include the first observation of
, , and decays and a significant improvement in the precision
of compared to previous measurements
Reconstruction of decays identified using hadronic decays of the recoil meson in 2019 -- 2021 Belle II data
We present results on the semileptonic decays and in a sample corresponding to
189.9/fb of Belle II data at the SuperKEKB collider. Signal decays
are identified using full reconstruction of the recoil meson in hadronic
final states. We determine the total branching fractions via fits to the
distributions of the square of the "missing" mass in the event and the dipion
mass in the signal candidate and find and where the dominant
systematic uncertainty comes from modeling the nonresonant contribution
Measurement of the lifetime
An absolute measurement of the lifetime is reported using
decays in events reconstructed from data
collected by the Belle II experiment at the SuperKEKB asymmetric-energy
electron-positron collider. The total integrated luminosity of the data sample,
which was collected at center-of-mass energies at or near the
resonance, is 207.2~\mbox{fb}^{-1}. The result, fs, is the most precise
measurement to date and is consistent with previous determinations.Comment: Accepted for publication in PR
Measurement of the branching fraction for the decay at Belle II
We report a measurement of the branching fraction of decays, where or
, using electron-positron collisions recorded at an energy at or near
the mass and corresponding to an integrated luminosity of
fb. The data was collected during 2019--2021 by the Belle II experiment
at the SuperKEKB asymmetric-energy collider. We reconstruct
candidates in the , , and
final states. The signal yields with statistical uncertainties are ,
, and for the decays , , and , respectively.
We measure the branching fractions of these decays for the entire range of the
dilepton mass, excluding the very low mass region to suppress the background and regions compatible with decays
of charmonium resonances, to be \begin{equation} {\cal B}(B \to
K^{\ast}(892)\mu^+\mu^-) = (1.19 \pm 0.31 ^{+0.08}_{-0.07}) \times 10^{-6},
{\cal B}(B \to K^{\ast}(892)e^+e^-) = (1.42 \pm 0.48 \pm 0.09)\times 10^{-6},
{\cal B}(B \to K^{\ast}(892)\ell^+\ell^-) = (1.25 \pm 0.30 ^{+0.08}_{-0.07})
\times 10^{-6}, \end{equation} where the first and second uncertainties are
statistical and systematic, respectively. These results, limited by sample
size, are the first measurements of branching
fractions from the Belle II experiment
Angular analysis of decays reconstructed in 2019, 2020, and 2021 Belle II data
We report on a Belle II measurement of the branching fraction
(), longitudinal polarization fraction (), and CP asymmetry
() of decays. We reconstruct decays in a
sample of SuperKEKB electron-positron collisions collected by the Belle II
experiment in 2019, 2020, and 2021 at the (4S) resonance and
corresponding to 190 fb of integrated luminosity. We fit the
distributions of the difference between expected and observed candidate
energy, continuum-suppression discriminant, dipion masses, and decay angles of
the selected samples, to determine a signal yield of events. The
signal yields are corrected for efficiencies determined from simulation and
control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\
2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6}f_L = 0.943 ^{+\
0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst)\mathcal{A}_{CP}=-0.069
\pm 0.068(\rm stat) \pm 0.060 (\rm syst)\mathcal{A}_{CP}B^+\to
\rho^+\rho^0$ decays reported by Belle II
- …