137 research outputs found

    Unbinned Deep Learning Jet Substructure Measurement in High Q2Q^2 ep collisions at HERA

    Get PDF
    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kTk_{\mathrm{T}} jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150Q^2>150 GeV2{}^2, and inelasticity 0.2<y<0.70.2 < y < 0.7. The analysis is also performed in sub-regions of Q2Q^2, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.Comment: 33 pages, 10 figures, 8 table

    Erratum to: Determination of the strong coupling constant {{\varvec{\alpha _{\mathrm{s}} (m_{\mathrm{Z}})}}} in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Get PDF

    B-flavor tagging at Belle II

    Get PDF
    We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom ( ) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb−1 , collected at the resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be εeff=(30.0±1.2(stat)±0.4(syst))% for a category-based algorithm and εeff=(28.8±1.2(stat)±0.4(syst))% for a deep-learning-based algorithm

    Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events

    Get PDF

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements

    Reconstruction of BρνB \to \rho \ell \nu_\ell decays identified using hadronic decays of the recoil BB meson in 2019 -- 2021 Belle II data

    Full text link
    We present results on the semileptonic decays B0ρ+νB^0 \to \rho^- \ell^+ \nu_\ell and B+ρ0+νB^+ \to \rho^0 \ell^+ \nu_\ell in a sample corresponding to 189.9/fb of Belle II data at the SuperKEKB ee+e^- e^+ collider. Signal decays are identified using full reconstruction of the recoil BB meson in hadronic final states. We determine the total branching fractions via fits to the distributions of the square of the "missing" mass in the event and the dipion mass in the signal candidate and find B(B0ρ+ν)=(4.12±0.64(stat)±1.16(syst))×104{\mathcal{B}(B^0\to\rho^-\ell^+ \nu_\ell) = (4.12 \pm 0.64(\mathrm{stat}) \pm 1.16(\mathrm{syst})) \times 10^{-4}} and B(B+ρ0+ν)=(1.77±0.23(stat)±0.36(syst))×104{\mathcal{B}({B^+\to\rho^0\ell^+\nu_\ell}) = (1.77 \pm 0.23 (\mathrm{stat}) \pm 0.36 (\mathrm{syst})) \times 10^{-4}} where the dominant systematic uncertainty comes from modeling the nonresonant B(ππ)+νB\to (\pi\pi)\ell^+\nu_\ell contribution

    Measurement of the Λc+\Lambda_c^+ lifetime

    Full text link
    An absolute measurement of the Λc+\Lambda^{+}_c lifetime is reported using Λc+pKπ+\Lambda_c^+\rightarrow pK^-\pi^+ decays in events reconstructed from data collected by the Belle II experiment at the SuperKEKB asymmetric-energy electron-positron collider. The total integrated luminosity of the data sample, which was collected at center-of-mass energies at or near the Υ(4S)\Upsilon(4S) resonance, is 207.2~\mbox{fb}^{-1}. The result, τ(Λc+)=203.20±0.89(stat)±0.77(syst)\tau(\Lambda^{+}_c) = 203.20 \pm 0.89 \,\mathrm{(stat)} \pm 0.77 \,\mathrm{(syst)} fs, is the most precise measurement to date and is consistent with previous determinations.Comment: Accepted for publication in PR

    Measurement of the branching fraction for the decay BK(892)+B \to K^{\ast}(892)\ell^+\ell^- at Belle II

    Full text link
    We report a measurement of the branching fraction of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- decays, where +=μ+μ\ell^+\ell^- = \mu^+\mu^- or e+ee^+e^-, using electron-positron collisions recorded at an energy at or near the Υ(4S)\Upsilon(4S) mass and corresponding to an integrated luminosity of 189189 fb1^{-1}. The data was collected during 2019--2021 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider. We reconstruct K(892)K^{\ast}(892) candidates in the K+πK^+\pi^-, KS0π+K_{S}^{0}\pi^+, and K+π0K^+\pi^0 final states. The signal yields with statistical uncertainties are 22±622\pm 6, 18±618 \pm 6, and 38±938 \pm 9 for the decays BK(892)μ+μB \to K^{\ast}(892)\mu^+\mu^-, BK(892)e+eB \to K^{\ast}(892)e^+e^-, and BK(892)+B \to K^{\ast}(892)\ell^+\ell^-, respectively. We measure the branching fractions of these decays for the entire range of the dilepton mass, excluding the very low mass region to suppress the BK(892)γ(e+e)B \to K^{\ast}(892)\gamma(\to e^+e^-) background and regions compatible with decays of charmonium resonances, to be \begin{equation} {\cal B}(B \to K^{\ast}(892)\mu^+\mu^-) = (1.19 \pm 0.31 ^{+0.08}_{-0.07}) \times 10^{-6}, {\cal B}(B \to K^{\ast}(892)e^+e^-) = (1.42 \pm 0.48 \pm 0.09)\times 10^{-6}, {\cal B}(B \to K^{\ast}(892)\ell^+\ell^-) = (1.25 \pm 0.30 ^{+0.08}_{-0.07}) \times 10^{-6}, \end{equation} where the first and second uncertainties are statistical and systematic, respectively. These results, limited by sample size, are the first measurements of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- branching fractions from the Belle II experiment

    Angular analysis of B+ρ+ρ0B^+ \to \rho^+\rho^0 decays reconstructed in 2019, 2020, and 2021 Belle II data

    Full text link
    We report on a Belle II measurement of the branching fraction (B\mathcal{B}), longitudinal polarization fraction (fLf_L), and CP asymmetry (ACP\mathcal{A}_{CP}) of B+ρ+ρ0B^+\to \rho^+\rho^0 decays. We reconstruct B+ρ+(π+π0(γγ))ρ0(π+π)B^+\to \rho^+(\to \pi^+\pi^0(\to \gamma\gamma))\rho^0(\to \pi^+\pi^-) decays in a sample of SuperKEKB electron-positron collisions collected by the Belle II experiment in 2019, 2020, and 2021 at the Υ\Upsilon(4S) resonance and corresponding to 190 fb1^{-1} of integrated luminosity. We fit the distributions of the difference between expected and observed BB candidate energy, continuum-suppression discriminant, dipion masses, and decay angles of the selected samples, to determine a signal yield of 345±31345 \pm 31 events. The signal yields are corrected for efficiencies determined from simulation and control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\ 2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6},, f_L = 0.943 ^{+\ 0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst),and, and \mathcal{A}_{CP}=-0.069 \pm 0.068(\rm stat) \pm 0.060 (\rm syst).Theresultsagreewithpreviousmeasurements.Thisisthefirstmeasurementof. The results agree with previous measurements. This is the first measurement of \mathcal{A}_{CP}in in B^+\to \rho^+\rho^0$ decays reported by Belle II
    corecore