10 research outputs found

    Synthesis of Novel Pyrido[1,2-c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole Moiety as Potential SSRI and 5-HT1A Receptor Ligands

    Get PDF
    Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a–i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a–i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a–i and 7a–i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d

    Curcumin and curcuminoids in quest for medicinal status

    No full text
    Curcumin, known for thousands of years as an Ayurvedic medicine, and popular as a spice in Asian cuisine, has undergone in recent times remarkable transformation into a drug candidate with prospective multipotent therapeutic applications. Characterized by high chemical reactivity, resulting from an extended conjugated double bond system prone to nucleophilic attack, curcumin has been shown to interact with a plethora of molecular targets, in numerous experimental observations based on spectral, physicochemical or biological principles. The collected preclinical pharmacological data support traditional claims concerning the medicinal potential of curcumin and its congeners but at the same time point to their suboptimal properties in the ADME (absorption, distribution, metabolism and excretion) area

    The Synthesis and Absolute Configuration of Enantiomeric Pure (R)- and (S)-3-(piperidin-3-yl)-1H-Indole Derivatives

    No full text
    This article describes the synthesis of new chiral 3-(piperidin-3-yl)-1H-indole derivatives (R)-10a-c and (S)-11a-c from the corresponding diastereomers: (3R, 2R) and (3S, 2R)-2-[3-(1H-indol-3-yl)-1-piperidyl]-2-phenyl-acetamides (3R, 2R)-4a, (3R, 2R)-6b, (3R, 2R)-8c and (3S, 2R)-5a, (3S, 2R)-7b, (3S, 2R)-9c. Diastereomers were obtained by N-alkylation of derivatives of racemic 3-(piperidin-3-yl)-1H-indoles 1a-c using (S)-2-(4-toluenesulfonyloxy)-phenylacetic amide (S)–II. The same method was applied to obtain (3R, 2S)-methyl-2-[3-(1H-indole-3-yl)-1-piperidyl]-2-phenylacetate (3R, 2S)-2a and (3S, 2S)-methyl-2-[3-(1H-indole-3-yl)-1-piperidyl]-2-phenylacetate (3S, 2S)-3a diastereomers by treating amine 1a with (R)-2-(4-toluenesulfonyloxy)-phenylacetic acid methylester (R)-I. Systematic studies via single crystal X-ray crystallography were used to determine the molecular structure of the racemates 1a-c and the absolute configuration of the enantiomers. The solid racemates 1b and 1c were “true racemates” crystallizing in a centrosymmetric space group, while 1a formed a racemic conglomerate of homoenantiomeric crystals. The absolute configuration was determined for the enantiomeric pairs (R)-10a/(S)-11a, (R)-10b/(S)-11b, and (R)-12c/(S)-13c, as well as for (3S,2S)-3a. Spectra of 1H, 13CNMR, HPLC, and HRMS for diastereomers and enantiomers were consistent with the determined structures
    corecore