8 research outputs found

    Composition related electrical active defect states of InGaAs and GaAsN

    Get PDF
    This paper discusses results of electrically active defect states - deep energy level analysis in InGaAs and GaAsN undoped semiconductor structures grown for solar cell applications. Main attention is focused on composition and growth condition dependent impurities and the investigation of their possible origins. For this purpose a widely utilized spectroscopy method, Deep Level Transient Fourier Spectroscopy, was utilized. The most significant responses of each sample labelled as InG2, InG3 and NG1, NG2 were discussed in detail and confirmed by simulations and literature data. The presence of a possible dual conduction type and dual state defect complex, dependent on the In/N composition, is reported. Beneficial characteristics of specific indium and nitrogen concentrations capable of eliminating or reducing certain point defects and dislocations are stated

    N coordination chemistry in diluted InGaAs nitride layers

    Get PDF
    GaAsN and InGaAsN semiconductor alloys with a small amount of nitrogen, so called dilute nitrides, constitute a novel compounds family with applications in telecom lasers and very efficient multijunction solar cells. The incorporation of N, which has a much larger electronegativity and smaller atomic size compared to As, induces a strong structural distortion in the InGaAs coordination chemistry, which will also affect the material electronic structure and band-gap. In particular, the nearest-neighbour bonding configuration of the N in InGaAsN has proven its influence on the band-gap. Our ARXPS results demonstrate that a higher growth temperature favour the formation of In-N bonds.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. - MINECO through TEC2011-28639-C02-02 and TEC2014-54260-C3-3-P - Wroclaw University of Technology statutory gran

    AP-MOVPE Technology and Characterization of InGaAsN p-i-n Subcell for InGaAsN/GaAs Tandem Solar Cell

    Get PDF
    Tandem (two p-n junctions connected by tunnel junction) and multijunction solar cells (MJSCs) based on AIIIBV semiconductor compounds and alloys are the most effective photovoltaic devices. Record efficiency of the MJSCs exceeds 44% under concentrated sunlight. Individual subcells connected in series by tunnel junctions are crucial components of these devices. In this paper we present atmospheric pressure metal organic vapour phase epitaxy (AP-MOVPE) of InGaAsN based subcell for InGaAsN/GaAs tandem solar cell. The parameters of epitaxial structure (optical and electrical), fabrication process of the test solar cell devices and current-voltage (J-V) characteristics are presented and discussed

    Photoluminescence and Raman spectroscopies as an optical approach of stress determining in MOVPE grown quantum cascade laser structures

    No full text
    In the presented work, an optical approach of stress determining in metalorganic vapor phase epitaxy (MOVPE) grown quantum cascade laser (QCL) structures was reported. In the case of such sophisticated structures containing hundreds of thin layers, it is important to minimize the stress generated in the QCL core. Techniques enabling determination of stress in such thin layers as those described in the article are photoluminescence and Raman spectroscopies. Based on Raman shift or changes in photoluminescence signal, it is possible to analyze stress occurring in the structure

    The influence of quantum well and barrier thicknesses on photoluminescence spectra of InGaAs/AlInAs superlattices grown by LP-MOVPE

    No full text
    In the presented work, the influence of the quantum well and barrier thicknesses on optical characteristics of InGaAs/AlInAs superlattices was reported. Six different structures of In0.53Ga0.47As/Al0.48In0.52As superlattices lattice-matched to InP were grown by low pressure metal organic vapour phase epitaxy (LP-MOVPE). Optical properties of the obtained structures were examined by means of photoluminescence spectroscopy. This technique allows quick, simple and non-destructive measurements of radiative optical transitions in different semiconductor heterostructures.The analysis of recorded photoluminescence spectra revealed the influence of the quantum well and barrier thicknesses on the emission line energy

    Influence of As-N Interstitial Complexes on Strain Generated in GaAsN Epilayers Grown by AP-MOVPE

    No full text
    This work presents an investigation of the fully strained GaAsN/GaAs heterostructures obtained by atmospheric pressure metalorganic vapor phase epitaxy, focusing on the analysis of the strain generated in the GaAsN epilayers and its correlation with the formation of split interstitial complexes (N-As)As. We analyzed strained GaAsN epilayers with nitrogen contents and thicknesses varying from 0.93 to 1.81% and 65 to 130 nm, respectively. The composition and thickness were determined by high resolution X-ray diffraction, and the strain was determined by Raman spectroscopy, while the N-bonding configurations were determined by X-ray photoelectron spectroscopy. We found that the strain generated in the GaAsN epilayers is mainly caused by a lattice mismatch with the GaAs substrate. This macroscopic strain is independent of the amount of (N-As)As interstitial defects, while the local strain, induced by an alloying effect, tends to decrease with an increasing ratio of (N-As)As interstitial defects to substitutional nitrogen atoms incorporated into an arsenic sublattice—NAs. Here, we show experimentally, for the first time, a correlation between the strain in the GaAsN epilayers, caused by an alloying effect determined by Raman spectroscopy, and the (N-As)As/NAs ratio estimated by the XPS method. We found out that the (N-As)As interstitials compensate the local strain resulting from the presence of N in the GaAs matrix, if their amount does not exceed ~65% of the substitutional introduced nitrogen NAs

    Heat Dissipation Schemes in AlInAs/InGaAs/InP Quantum Cascade Lasers Monitored by CCD Thermoreflectance

    No full text
    In this paper, we report on the experimental investigation of the thermal performance of lattice matched AlInAs/InGaAs/InP quantum cascade lasers. Investigated designs include double trench, single mesa, and buried heterostructures, which were grown by combined Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) techniques. The thermal characteristics of lasers are investigated by Charge-Coupled Device CCD thermoreflectance. This method allows for the fast and accurate registration of high-resolution temperature maps of the whole device. We observe different heat dissipation mechanisms for investigated geometries of Quantum Cascade Lasers (QCLs). From the thermal point of view, the preferred design is the buried heterostructure. The buried heterostructures structure and epi-layer down mounting help dissipate the heat generated from active core of the QCL. The experimental results are in very good agreement with theoretical predictions of heat dissipation in various device constructions
    corecore