37 research outputs found
Recommended from our members
Dissociative Electron Attachment Cross Sections for H<sub>2</sub> and D<sub>2</sub>
New measurements of the absolute cross sections for dissociative electron attachment (DEA) in
molecular hydrogen and deuterium are presented which resolve previous ambiguities and provide a
test bed for theory. The experimental methodology is based upon a momentum imaging time-of-flight
spectrometer that allowed us to eliminate any contributions due to electronically excited metastable
neutrals and ultraviolet light while ensuring detection of all the ions. The isotope effect in the DEA
process in the two molecules is found to be considerably larger than previously observed. More
importantly, it is found to manifest in the polar dissociation process (also known as ion pair production)
as well
Three-Dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades
We numerically investigate the excitation and temporal evolution of
oscillations in a two-dimensional coronal arcade by including the
three-dimensional propagation of perturbations. The time evolution of
impulsively generated perturbations is studied by solving the linear, ideal
magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we
neglect gas pressure the slow mode is absent and therefore only coupled MHD
fast and Alfven modes remain. Two types of numerical experiments are performed.
First, the resonant wave energy transfer between a fast normal mode of the
system and local Alfven waves is analyzed. It is seen how, because of resonant
coupling, the fast wave with global character transfers its energy to Alfvenic
oscillations localized around a particular magnetic surface within the arcade,
thus producing the damping of the initial fast MHD mode. Second, the time
evolution of a localized impulsive excitation, trying to mimic a nearby coronal
disturbance, is considered. In this case, the generated fast wavefront leaves
its energy on several magnetic surfaces within the arcade. The system is
therefore able to trap energy in the form of Alfvenic oscillations, even in the
absence of a density enhancement such as that of a coronal loop. These local
oscillations are subsequently phase-mixed to smaller spatial scales. The amount
of wave energy trapped by the system via wave energy conversion strongly
depends on the wavelength of perturbations in the perpendicular direction, but
is almost independent from the ratio of the magnetic to density scale heights.Comment: 27 pages, 11 figure
Non-adiabatically driven electron in quantum wire with spin-orbit interaction
An exact solution is derived for the wave function of an electron in a
semiconductor quantum wire with spin-orbit interaction and driven by external
time dependent harmonic confining potential. The formalism allows analytical
expressions for various quantities to be derived, such as spin and pseudo-spin
rotations, energy and occupation probabilities for excited states. It is
demonstrated how perfect spin and pseudo-spin flips can be achieved at high
frequencies of order \omega, the confining potential level spacing. By an
appropriately chosen driving term, spin manipulation can be exactly performed
far into the non-adiabatic regime. Implications for spin-polarised emission and
spin-dependent transport are also discussed.Comment: 11 pages, 3 figure
Stability of gold nanowires at large Au-Au separations
The unusual structural stability of gold nanowires at large separations of
gold atoms is explained from first-principles quantum mechanical calculations.
We show that undetected light atoms, in particular hydrogen, stabilize the
experimentally observed structures, which would be unstable in pure gold wires.
The enhanced cohesion is due to the partial charge transfer from gold to the
light atoms. This finding should resolve a long-standing controversy between
theoretical predictions and experimental observations.Comment: 7 pages, 3 figure
Plasma–wall interaction studies within the EUROfusion consortium : progress on plasma-facing components development and qualification
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful o peration of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading f acilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualificat ion and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these c ritical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle lo ads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alter native scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and m icrostructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.Peer reviewe
Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
Black hole spin: theory and observation
In the standard paradigm, astrophysical black holes can be described solely
by their mass and angular momentum - commonly referred to as `spin' - resulting
from the process of their birth and subsequent growth via accretion. Whilst the
mass has a standard Newtonian interpretation, the spin does not, with the
effect of non-zero spin leaving an indelible imprint on the space-time closest
to the black hole. As a consequence of relativistic frame-dragging, particle
orbits are affected both in terms of stability and precession, which impacts on
the emission characteristics of accreting black holes both stellar mass in
black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN).
Over the last 30 years, techniques have been developed that take into account
these changes to estimate the spin which can then be used to understand the
birth and growth of black holes and potentially the powering of powerful jets.
In this chapter we provide a broad overview of both the theoretical effects of
spin, the means by which it can be estimated and the results of ongoing
campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes -
From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer:
Astrophysics and Space Science Library. Additional corrections mad
Low energy H
The production of low-energy H− by electron impact with CH4,
C2H2, C2H4, C2H6 and
C3H8 has been studied within electron energy range 0−20 eV. The
dissociative electron attachment and dipolar dissociation (also known as ion pair
production) are contributing to formation of H− in this energy range. A special
ion extraction system for collection of low-energy light ions was used. Low-energy
H− production rates for all studied molecules are found lower yet similar to
those for hydrogen at 14 eV dissociative attachment maximum. A vertical onset of ion yield
is observed for the dissociative attachment in CH4, C2H2,
and C3H8. The production rate of H− through the dipolar
dissociation is observed to be high in the case of C2H4