315 research outputs found

    Probing functional (re)organisation in photosynthesis by time-resolved fluorescence spectroscopy

    Get PDF
    Summary The possible mechanisms for reorganisation of outer LHCs of PSII (LHCII) upon state transitions in Chlamydomonas reinhardtii have been discussed for several decades [38, 43-54]. For a long time people adhered to the opinion that upon the transition from state 1 to state 2, 80% of LHCII detaches from PSII and attaches completely to PSI in Chlamydomonas reinhardtii [38, 45]. This thesis provides new insights for the mechanism of state transitions in Chlamydomonas reinhardtii. In the remainder of this thesis, the role of minor light-harvesting complexes in excitation energy transfer to reaction centers of photosystem II are discussed as well as multiexciton dynamics of the alloyed ZnCdTe quantum dots are studied in detail. In chapter 2, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that although LHCs indeed detach from Photosystem II in state-2 conditions only a fraction attaches to Photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants. In chapter 3, we study the picosecond fluorescence properties of Chlamydomonas reinhardtti over a broad range of wavelengths at 77K. It is observed that upon going from state 1 (relatively high 680nm/720nm fluorescence ratio) to state 2 (low ratio), a large part of the fluorescence of LHC/PSII becomes substantially quenched, probably because of LHC detachment from PSII, whereas the fluorescence of PSI hardly changes. These results are in agreement with the proposal in chapter 2 that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is very limited. In chapter 4, we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoids membranes isolated from A. thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII. In chapter 5, we have performed picosecond fluorescence measurements on ZnCdTe ternary quantum dots at room temperature by using a streak-camera setup in order to investigate in detail the fluorescence kinetics for ZnCdTe quantum dots with different size and structure by using different excitation laser intensities. Our data show that the changes in fluorescence kinetics are mostly related to the changes in structure and size. In heterogeneous structured ZnCdTe quantum dots, the fluorescence kinetics become faster as compared to homogeneous structured ZnCdTe quantum dots. Also, in both homogeneous and heterogeneous ZnCdTe quantum dots, a new peak is observed in the high-energy region of the emission spectrum when using high excitation intensities, which shows that the radiative processes that occur from higher energy states become more favoured as the excitation intensity increases.</p

    A geochemical equilibrium modeling approach to assessing soil acidification impacts due to depositions of industrial air emissions

    Get PDF
    Soil acidification impacts arising from depositions of industrial air emissions may become a serious environmental concern. Currently, in the literature quantitative mechanistic modeling and the experimental acid neutralizing capacity (ANC) approach and a qualitative evaluation approach classifying soils into various levels of sensitivity to acid additions have been reported to assess the long-term soil acidification impacts due to industrial air emissions. Another alternative quantitative approach proposed by this study is the geochemical modeling approach that can be used to similate an ANC curve based on relevant soil chemistry data by calculating the equilibrium distributions of chemical species in the soil solution according to the specified geochemical processes. The purpose of this syudy was essentially to illustrate the potential applications and practical utility of the proposed geochemical modeling approach to assessing soil acidification impacts due to industrial air emissions. The application of the geochemical modeling approach was illustrated by comparisons of the experimental and simulated ANC curves for a calcareous and a noncalcareous soil representing insensitive and sensitive soil cases, respectively. Results obtained from these comparisons reveal that, in terms of producing the ANC curve for the soil solution, the geochemical modeling approach seems to perform well and produce more reliable results for calcareous soil than for noncalcareous soil. However, the approach can also be used for noncalcareous soils when the air emission rates are low and may need further testing with additional measured data for a wide range of soils other than those presented in this study

    Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid Rhopalosiphum padi

    Get PDF
    Methyl salicylate (MeSA) is a volatile shown to act as an inducer of plant defense against pathogens and certain herbivores, particularly aphids. It has been shown to have potential for aphid pest management, but knowledge on its mode of action is lacking, particularly induced plant-mediated effects. This study investigated the effects of exposing plants to MeSA on the host searching, host acceptance and feeding behavior of the bird cherry-oat aphid Rhopalosiphum padi. Barley plants were exposed to volatile MeSA for 24 h, after which biological effects were tested immediately after the exposure (Day 0), and then 1, 3 and 5 days after the end of the exposure. Aphid settling on MeSA-exposed plants was significantly reduced on days 0, 1 and 3, but not on day 5. In olfactometer tests, aphids preferred the odor of unexposed plants on days 1 and 3, but not on day 0 or 5. Analysis of volatiles from exposed and unexposed plants showed higher levels of MeSA from exposed plants, most likely absorbed and re-released from plant surfaces, but also specific changes in other plant volatiles on days 0, 1 and 3. High doses of MeSA did not affect aphid orientation in an olfactometer, but lower doses were repellent. Analysis of aphid feeding by Electronic penetration graph (EPG) showed that MeSA exposure resulted in resistance factors in barley plants, including surface factors and induced systemic factors in other tissues including the phloem. The results support the potential of MeSA as a potential tool for management of aphid pests

    Medical adjunctive therapy for patients with chronic limb-threatening ischemia:a systematic review

    Get PDF
    INTRODUCTION: To systematically review the literature on medical adjunctive therapy for patients with chronic limb-threatening ischemia (CLTI). EVIDENCE ACQUISITION: MEDLINE, Embase, and Cochrane Database of Systematic Reviews were searched for studies published between January 1, 2009, and June 1, 2019. Articles that studied medical treatment of CLTI patients and reported clinical outcomes were eligible. Main exclusion criteria were case reports <20 patients, incorrect publication type, and CLTI caused by Buerger disease. The primary end point was major amputation (above the ankle) in studies with a follow-up of ≥6 months. Secondary end points were other clinical end points such as death and wound healing. Study quality was assessed according to the Downs and Black checklist. EVIDENCE SYNTHESIS: Included were 42 articles; 4 focused on antiplatelet therapy, 5 on antihypertensive medication, 6 on lipid-lowering therapy, 16 on stem cell therapy, 3 on growth factors, 5 on prostanoids, and 1 study each on cilostazol, glucose-lowering therapy, spinal cord stimulation, sulodexide, and hemodilution. Calcium channel blockers, iloprost, cilostazol, and hemodilution showed significant improvement of limb salvage, but data are limited. Stem cell therapy showed no significant improvement of limb salvage but could potentially improve wound healing. Antiplatelets, antihypertensives, and statins showed significantly lower cardiovascular events rates but not evident lower major amputation rates. The quality of the studies was fair to good. CONCLUSIONS: Certain medical therapies serve to improve limb salvage next to revascularization in CLTI patients, whereas others are important in secondary prevention. Because high quality evidence is limited, further research is needed

    Hyperspectral imaging for noninvasive tissue perfusion measurements of the lower leg:review of literature and introduction of a standardized measurement protocol with a portable system

    Get PDF
    INTRODUCTION: Hyperspectral imaging (HSI) is a noninvasive technique for transcutaneous measurements of tissue perfusion. This study (1) provides a review of the current literature on HSI for tissue perfusion measurements of the lower leg and (2) introduces a standardized measurement protocol for HSI measurements with a portable system. EVIDENCE ACQUISITION: A literature search was performed for studies on tissue perfusion measurements with HSI in the lower extremity. A standardized protocol was developed to perform HSI measurements in 43 healthy volunteers at the plantar side of the foot and at the lateral side of the calf, with 3 consecutive hyperspectral images at each location. EVIDENCE SYNTHESIS: The literature review identified 9 studies, including 2 of healthy volunteers. 4 of patients with diabetes mellitus, and 3 of patients with peripheral arterial disease. In 5 of 7 patient studies, HSI values were associated with severity of disease or wound healing. In our study, the healthy volunteers' I ISI values for oxyhemoglobin, deoxyhemoglobin, and oxygen saturation were (mean +/- SD) 82.8 +/- 24, 55.7 +/- 15.7, and 59.2 +/- 11.7, respectively, at the plantar surface of the foot, and 40.8 +/- 11, 38.0 +/- 7.8, and 51.7 +/- 10.5, respectively, at the lateral side of the calf. HSI values differed significantly between the calf and plantar locations. Intraoperator reliability between the 3 consecutive images ranged from 81% to 89%. CONCLUSIONS: Limited evidence indicates that HSI is associated with severity of peripheral arterial disease and diabetes mellitus, and with wound healing. Hyperspectral images with a portable system can be taken with high precision when a standardized measurement protocol is used. However, differences exist at several locations at the lower extremity, so each measurement location should be used as its own reference when consecutive measurements are performed during follow-up. More studies with larger patient cohorts should be performed before HSI can be incorporated as standard tool in the diagnostic armamentarium of the vascular specialist

    Detecting Changes in Tissue Perfusion With Hyperspectral Imaging and Thermal Imaging Following Endovascular Treatment for Peripheral Arterial Disease

    Get PDF
    PurposeHyperspectral imaging (HSI) and thermal imaging allow contact-free tissue perfusion measurements and may help determine the effect of endovascular treatment (EVT) in patients with peripheral arterial disease. This study aimed to detect changes in perfusion with HSI and thermal imaging peri-procedurally and determine whether these changes can identify limbs that show clinical improvement after 6 weeks.MethodsPatients with Rutherford class 2–6 scheduled for EVT were included prospectively. Hyperspectral imaging and thermal imaging were performed directly before and after EVT. Images were taken from the lateral side of the calves and plantar side of the feet. Concentrations of (de)oxyhemoglobin, oxygen saturation, and skin temperature were recorded. Angiographic results were determined on completion angiogram. Clinical improvement 6 weeks after EVT was defined as a decrease ≥ one Rutherford class. Peri-procedural changes in perfusion parameters were compared between limbs with and without good angiographic results or clinical improvement. To identify limbs with clinical improvement, receiver operating characteristic (ROC) curves were used to determine cutoff values for change in HSI.ResultsIncluded were 23 patients with 29 treated limbs. Change in HSI values and temperature was not significantly different between limbs with good and poor angiographic results. Change in peri-procedural deoxyhemoglobin, determined by HSI, at the calves and feet was significantly different between limbs with and without clinical improvement at 6 week follow-up (p=0.027 and p=0.017, respectively). The ROC curve for change in deoxyhemoglobin at the calves showed a cutoff value of ≤1.0, and ≤−0.5 at the feet, which were discriminative for clinical improvement (sensitivity 77%; specificity 75% and sensitivity 62%; specificity 88%, respectively).ConclusionsHSI can detect changes in perfusion at the calves after EVT in patients with Rutherford class 2–6. Peri-procedural deoxyhemoglobin changes at the calves and feet are significantly different between limbs with and without clinical improvement. Decrease in deoxyhemoglobin directly after EVT may identify limbs that show clinical improvement 6 weeks after EVT

    Simulation of evapotranspiration using SWAP model

    Get PDF
    corecore