8 research outputs found
Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain
Migratory storks could be vectors of transmission of bacteria of public health concern mediated by the colonization, persistence and excretion of such bacteria. This study aims to determine genera/species diversity, prevalence, and co-colonization indices of bacteria obtained from tracheal (T) and nasal (N) samples from storks in relation to exposure to point sources through foraging. One-hundred and thirty-six samples from 87 nestlings of colonies of parent white storks with different foraging habits (natural habitat and landfills) were obtained (84 T-samples and 52 N-samples) and processed. Morphologically distinct colonies (up to 12/sample) were randomly selected and identified by MALDI-TOF-MS. About 87.2% of the total 806 isolates recovered were identified: 398 from T-samples (56.6%) and 305 from N-samples (43.4%). Among identified isolates, 17 genera and 46 species of Gram-positive and Gram-negative bacteria were detected, Staphylococcus (58.0%) and Enterococcus (20.5%) being the most prevalent genera. S. sciuri was the most prevalent species from T (36.7%) and N (34.4%) cavities of total isolates, followed by E. faecalis (11.1% each from T and N), and S. aureus [T (6.5%), N (13.4%)]. Of N-samples, E. faecium was significantly associated with nestlings of parent storks foraging in landfills (p = 0.018). S. sciuri (p = 0.0034) and M. caseolyticus (p = 0.032) from T-samples were significantly higher among nestlings of parent storks foraging in natural habitats. More than 80% of bacterial species in the T and N cavities showed 1–10% co-colonization indices with one another, but few had ≥ 40% indices. S. sciuri and E. faecalis were the most frequent species identified in the stork nestlings. Moreover, they were highly colonized by other diverse and potentially pathogenic bacteria. Thus, storks could be sentinels of point sources and vehicles of bacterial transmission across the “One Health” ecosystems.This work was supported by the project PID2019-106158RB-I00 of the MCIN/AEI/10.13039/501100011033 of Spain and project SBPLY/19/180501/000325 of the regional government of Castilla—La Mancha co-financed by the European Union’s funds for regional development (Feder). Also, it received funding from the European Union’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agrrement No. 801586. J.P.-P. was supported by a postdoctoral grant Margarita Salas from the European Union – Next GenerationEU through the Complutense University of Madrid.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Peer reviewe
High prevalence and intensity of Stephanurus dentatus in a population of wild boar (Sus scrofa) in south western Spain
©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Accepted, version of a Published Work that appeared in final form in The Veterinary Journal. To access the final edited and published work see https://doi.org/10.1016/j.tvjl.2018.09.004In the period from October 2016 to February 2017, the urinary tracts of 390 wild boar (Sus scrofa) from four areas of south central Spain (102 from Doñana National Park; 150 from Sierra Morena and the Toledo Mountains; 84 from Sierra Nevada; 54 from Sierra de Cazorla, Segura y Las Villas Natural Park) were examined for the presence of adult specimens of Stephanurus dentatus (Nematoda: Strongyloidea). This parasite was only detected in the wild boar population of Doñana National Park, with high prevalence (76.5 ± 4.2%; 78/102), mean intensity (43.2 ± 4.4) and mean abundance (33.1 ± 3.8). Juvenile wild boar had significantly lower prevalence and abundance than subadult and adult wild boar. The intensity of infestation was significantly higher in male than in female wild boar. The detection of a focus of S. dentatus infestation in the wild boar population in Doñana National Park will provide further opportunities for understanding the epidemiology of this parasite
Antimicrobial resistome of coagulase-negative staphylococci from nasotracheal cavities of nestlings of Ciconia ciconia in Southern Spain: Detection of mecC-SCCmec type-XI-carrying S. lentus
The antimicrobial resistance (AMR) genes of 268 non-duplicated coagulase-negative staphylococci (CoNS) previously obtained from nasotracheal cavities of nestling storks were characterized. They included S. sciuri isolates (n = 191), and non-sciuri-CoNS isolates (NSc-CoNS, n = 77). All S. sciuri carried the intrinsic salA gene (for clindamycin-resistance) and so, clindamycin was not considered for general analysis in this species. About 71.7%/41.6% of the S. sciuri/NSc-CoNS isolates were susceptible to all antibiotics tested; moreover, 14.1%/16.9% and 3.1%/20.8% of S. sciuri/NSc-CoNS showed single antibiotic resistance and multidrug resistance (MDR) phenotype, respectively. Of the ten mecA-positive CoNS isolates, six were associated with SCCmec types-III, -IV or -V elements. Remarkably was the detection of one MDR-S. lentus isolate carrying both mecA and mecC genes, as well as the SCCmec type-XI element. MDR-CoNS was relatively higher in nestlings of parent storks foraging in landfills (21.3%) than those in natural areas (9.7%) (χ2 = 3.421, df=1, p = 0.064). AMR phenotypes (and genes detected) include penicillin (blaZ, blaARL), erythromycin-clindamycin-constitutive (ermA, ermC, ermT), clindamycin (lnuA, salA, vgaA), erythromycin (msrA, mphC), tetracycline (tetK, tetL, tetM), tobramycin (ant4′), tobramycin-gentamicin (aac6′-aph2″), sulfamethoxazole-trimethoprim (dfrA, dfrG, dfrK), chloramphenicol (fexA, fexB, catPC221), and mupirocin (mupA). Interestingly, one S. epidermidis isolate carried the ermT gene. About 29.9% of nestlings harboured more than one non-duplicated CoNS (with varied 2–5 AMR profiles). This study demonstrated that most of the CoNS isolates were susceptible to all the antibiotics tested (63.1%). However, AMR genes of public health importance were found, including the mecC-mediated methicillin resistance trait.This work was financed by MCIN/ AEI /10.13039/501100011033 of Spain. Also, it received funding from the European Union’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N° 801586.Peer reviewe
Louping Ill in Goats, Spain, 2011
Although louping ill affects mainly sheep, a 2011 outbreak in northern Spain occurred among goats. Histopathologic lesions and molecular genetics identified a new strain of louping ill virus, 94% identical to the strain from Britain. Surveillance is needed to minimize risk to domestic and wildlife species and humans