11 research outputs found

    Determinants of interindividual variation in exercise-induced cardiac troponin i levels

    Get PDF
    Background Postexercise cardiac troponin levels show considerable interindividual variations. This study aimed to identify the major determinants of this postexercise variation in cardiac troponin I (cTnI) following 3 episodes of prolonged high‐intensity endurance exercise. Methods and Results Study subjects were recruited among prior participants in a study of recreational cyclists completing a 91‐km mountain bike race in either 2013 or 2014 (first race). In 2018, study participants completed a cardiopulmonary exercise test 2 to 3 weeks before renewed participation in the same race (second race). Blood was sampled before and at 3 and 24 hours following all exercises. Blood samples were analyzed using the same Abbot high‐sensitivity cTnI STAT assay. Fifty‐nine individuals (aged 50±9 years, 13 women) without cardiovascular disease were included. Troponin values were lowest before, highest at 3 hours, and declining at 24 hours. The largest cTnI difference was at 3 hours following exercise between the most (first race) (cTnI: 200 [87–300] ng/L) and the least strenuous exercise (cardiopulmonary exercise test) (cTnI: 12 [7–23] ng/L; P<0.001). The strongest correlation between troponin values at corresponding times was before exercise (r=0.92, P<0.0001). The strongest correlations at 3 hours were between the 2 races (r=0.72, P<0.001) and at 24 hours between the cardiopulmonary exercise test and the second race (r=0.83, P<0.001). Participants with the highest or lowest cTnI levels showed no differences in race performance or baseline echocardiographic parameters. Conclusions The variation in exercise‐induced cTnI elevation is largely determined by a unique individual cTnI response that is dependent on the duration of high‐intensity exercise and the timing of cTnI sampling.publishedVersio

    Sex differences in disease progression and arrhythmic risk in patients with arrhythmogenic cardiomyopathy

    No full text
    Abstract Aims We aimed to assess sex-specific phenotypes and disease progression, and their relation to exercise, in arrhythmogenic cardiomyopathy (AC) patients. Methods and results In this longitudinal cohort study, we included consecutive patients with AC from a referral centre. We performed echocardiography at baseline and repeatedly during follow-up. Patients’ exercise dose at inclusion was expressed as metabolic equivalents of task (MET)-h/week. Ventricular arrhythmia (VA) was defined as aborted cardiac arrest, sustained ventricular tachycardia, or appropriate therapy by implantable cardioverter-defibrillator. We included 190 AC patients (45% female, 51% probands, age 41 ± 17 years). Ventricular arrhythmia had occurred at inclusion or occurred during follow-up in 85 patients (33% of females vs. 55% of males, P = 0.002). Exercise doses were higher in males compared with females [25 (interquartile range, IQR 14–51) vs. 12 (IQR 7–22) MET-h/week, P &amp;lt; 0.001]. Male sex was a marker of proband status [odds ratio (OR) 2.6, 95% confidence interval (CI) 1.4–5.0, P = 0.003] and a marker of VA (OR 2.6, 95% CI 1.4–5.0, P = 0.003), but not when adjusted for exercise dose and age (adjusted OR 1.8, 95% CI 0.9–3.6, P = 0.12 and 1.5, 95% CI 0.7–3.1, P = 0.30, by 5 MET-h/week increments). In all, 167 (88%) patients had ≥2 echocardiographic examinations during 6.9 (IQR 4.7–9.8) years of follow-up. We observed no sex differences in deterioration of right or left ventricular dimensions and functions. Conclusion Male AC patients were more often probands and had higher prevalence of VA than female patients, but not when adjusting for exercise dose. Importantly, disease progression was similar between male and female patients

    Determinants of interindividual variation in exercise-induced cardiac troponin I levels

    No full text
    Background: Postexercise cardiac troponin levels show considerable interindividual variations. This study aimed to identify the major determinants of this postexercise variation in cardiac troponin I (cTnI) following 3 episodes of prolonged high‐intensity endurance exercise. Methods and Results: Study subjects were recruited among prior participants in a study of recreational cyclists completing a 91‐km mountain bike race in either 2013 or 2014 (first race). In 2018, study participants completed a cardiopulmonary exercise test 2 to 3 weeks before renewed participation in the same race (second race). Blood was sampled before and at 3 and 24 hours following all exercises. Blood samples were analyzed using the same Abbot high‐sensitivity cTnI STAT assay. Fifty‐nine individuals (aged 50±9 years, 13 women) without cardiovascular disease were included. Troponin values were lowest before, highest at 3 hours, and declining at 24 hours. The largest cTnI difference was at 3 hours following exercise between the most (first race) (cTnI: 200 [87–300] ng/L) and the least strenuous exercise (cardiopulmonary exercise test) (cTnI: 12 [7–23] ng/L; P<0.001). The strongest correlation between troponin values at corresponding times was before exercise (r=0.92, P<0.0001). The strongest correlations at 3 hours were between the 2 races (r=0.72, P<0.001) and at 24 hours between the cardiopulmonary exercise test and the second race (r=0.83, P<0.001). Participants with the highest or lowest cTnI levels showed no differences in race performance or baseline echocardiographic parameters. Conclusions: The variation in exercise‐induced cTnI elevation is largely determined by a unique individual cTnI response that is dependent on the duration of high‐intensity exercise and the timing of cTnI sampling

    Pregnancy and Progression of Cardiomyopathy in Women With LMNA Genotype‐Positive

    No full text
    Background We aimed to assess the association between number of pregnancies and long‐term progression of cardiac dysfunction, arrhythmias, and event‐free survival in women with pathogenic or likely pathogenic variants of gene encoding for Lamin A/C proteins ( LMNA+). Methods and Results We retrospectively included consecutive women with LMNA+ and recorded pregnancy data. We collected echocardiographic data, occurrence of atrial fibrillation, atrioventricular block, sustained ventricular arrhythmias, and implantation of cardiac electronic devices (implantable cardioverter defibrillator/cardiac resynchronization therapy defibrillator). We analyzed retrospectively complications during pregnancy and the peripartum period. We included 89 women with LMNA+ (28% probands, age 41±16 years), of which 60 had experienced pregnancy. Follow‐up time was 5 [interquartile range, 3–9] years. We analyzed 452 repeated echocardiographic examinations. Number of pregnancies was not associated with increased long‐term risk of atrial fibrillation, atrioventricular block, sustained ventricular arrhythmias, or implantable cardioverter defibrillator/cardiac resynchronization therapy defibrillator implantation. Women with previous pregnancy and nulliparous women had a similar annual deterioration of left ventricular ejection fraction (−0.5/year versus −0.3/year, P=0.37) and similar increase of left ventricular end‐diastolic diameter (0.1/year versus 0.2/year, P=0.09). Number of pregnancies did not decrease survival free from death, left ventricular assist device, or need for cardiac transplantation. Arrhythmias occurred during 9% of pregnancies. No increase in maternal and fetal complications was observed. Conclusions In our cohort of women with LMNA+, pregnancy did not seem associated with long‐term adverse disease progression or event‐free survival. Likewise, women with LMNA+ generally well‐tolerated pregnancy, with a small proportion of patients experiencing arrhythmias
    corecore