8 research outputs found

    Association of the Asn306Ser variant of the SP4 transcription factor and an intronic variant in the β-subunit of transducin with digenic disease

    Get PDF
    Purpose SP4 is a transcription factor abundantly expressed in retina that binds to the GC promoter region of photoreceptor signal transduction genes. We have previously shown that SP4 may be involved in the transcriptional activation of these genes alone or together with other transcription factors such as SP1, neural retina leucine zipper protein (NRL), and cone-rod homeobox gene (CRX). Since mutations in NRL and CRX are involved in inherited retinal degenerations, SP4 was considered a good candidate for mutation screening in patients with this type of diseases. The purpose of this work, therefore, was to investigate possible mutations in SP4 in a cohort of patients affected with different forms of retinal degenerations. Methods 270 unrelated probands with various forms of retinal degeneration including autosomal dominant and autosomal recessive retinitis pigmentosa (RP), autosomal dominant and autosomal recessive cone-rod dystrophy (CRD), and Leber's congenital amaurosis (LCA), were screened for mutations in the SP4 gene. Single strand conformation polymorphism (SSCP) analysis was performed on the six SP4 gene exons including flanking regions followed by direct sequencing of SSCP variants. Results Nine different sequence variants were found in 29 patients, four in introns and five in exons. Many of the probands were previously screened for mutations in the genes encoding the α-, β- and γ-subunits of rod-specific cGMP phosphodiesterase (PDE6A, PDE6B, PDE6G), the β-subunit of rod-specific transducin (GNB1), and peripherin/rds (RDS). One group of seven probands of Hispanic background that included five with arRP, one with RP of unknown inheritance (isolate) and 1 with arCRD carried an Asn306Ser mutation in SP4. Of the seven, the isolate case was homozygous and the other 6 heterozygous for the variant. Two arRP and the arCRD probands carried an additional intronic GNB1 variant. DNA from the family members of the arCRD proband could not be obtained, but for the other two families, all affected members and none of the unaffected carried both the SP4 Asn306Ser allele and the GNB1 intronic variant. Conclusions If mutations in SP4 do cause retinal degenerative disease, their frequency would be low. While digenic disease with the SP4 Asn306Ser and the GNB1 intronic variant alleles has not been established, neither has it been ruled out. This leaves open the possibility of a cooperative involvement of SP4 and GNB1 in the normal function of the retina.PubMedWo

    Discovery of biomarkers in rare diseases: innovative approaches by predictive and personalized medicine

    Get PDF
    There are more than 8000 rare diseases (RDs) that affect >5 % of the world's population. Many of the RDs have no effective treatment and lack of knowledge creates delayed diagnosis making management difficult. The emerging concept of the personalized medicine allows for early screening, diagnosis, and individualized treatment of human diseases. In this context, the discovery of biomarkers in RDs will be of prime importance to enable timely prevention and effective treatment. Since 80 % of RDs are of genetic origin, identification of new genes and causative mutations become valuable biomarkers. Furthermore, dynamic markers such as expressed genes, metabolites, and proteins are also very important to follow prognosis and response the therapy. Recent advances in omics technologies and their use in combination can define pathophysiological pathways that can be drug targets. Biomarker discovery and their use in diagnosis in RDs is a major pillar in RD research

    Autoinflammation in addition to combined immunodeficiency: SLC29A3 gene defect

    No full text
    Introduction: H Syndrome is an autosomal recessive (AR) disease caused by defects in SLCA29A3 gene. This gene encodes the equilibrative nucleoside transporter, the protein which is highly expressed in spleen, lymph node and bone marrow. Autoinflammation and autoimmunity accompanies H Syndrome (HS)
    corecore